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a b s t r a c t

Rewards have important influences on the motor planning of primates and the firing of neurons coding
visual information and action. When eye movements to a target are differentially rewarded across
locations, primates execute saccades towards the possible target location with the highest expected
value, a product of sensory evidence and potentially earned reward (saccade to maximum expected value
model, sMEV). Yet, in the natural world eye movements are not directly rewarded. Their role is to gather
information to support subsequent rewarded search decisions and actions. Less is known about the
effects of decision rewards on saccades. We show that when varying the decision rewards across cued
locations following visual search, humans can plan their eye movements to increase decision rewards.
Critically, we report a scenario for which five of seven tested humans do not preferentially deploy
saccades to the possible target location with the highest reward, a strategy which is optimal when
rewarding eye movements. Instead, these humans make saccades towards lower value but clustered
locations when this strategy optimizes decision rewards consistent with the preferences of an ideal
Bayesian reward searcher that takes into account the visibility of the target across eccentricities. The
ideal reward searcher can be approximated with a sMEV model with pooling of rewards from spatially
clustered locations. We also find observers with systematic departures from the optimal strategy and
inter-observer variability of eye movement plans. These deviations often reflect multiplicity of fixation
strategies that lead to near optimal decision rewards but, for some observers, it relates to suboptimal
choices in eye movement planning.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The varying quality of visual processing across the visual field
prompts many animals (Land & Nilsson, 2002) to move their eyes
to explore the visual environment to make decisions about the
presence, location and identity of sought objects (targets). For
example, for humans the visual periphery is limited by reduced
spatial resolution (Rovamo et al., 1984), increased crowding effects
(Pelli, 2008) and position uncertainty (Michel & Geisler, 2011).
Thus, scrutinizing the scene with eye movements can improve
decision accuracy during search. The primate brain has evolved a
variety of coding schemes and strategies to succeed at search.
The human brain utilizes knowledge about target and distractor
physical properties (Eckstein et al., 2007; Findlay, 1997; Malcolm
& Henderson, 2009; Peelen & Kastner, 2011; Tavassoli et al.,

2009), contextual information and cues predictive of the target
locations in the environment (Brockmole, Castelhano, &
Henderson, 2006; Castelhano & Heaven, 2010, 2011; Chun &
Jiang, 1998; Droll, Abbey, & Eckstein, 2009; Eckstein, Drescher, &
Shimozaki, 2006; Hayhoe & Ballard, 2005; Jovancevic-Misic &
Hayhoe, 2009; Mack & Eckstein, 2011; Neider & Zelinsky, 2006;
Peterson & Kramer, 2001; Preston et al., 2013; Torralba et al.,
2006), and oculomotor plans (Chen & Zelinsky, 2006; He &
Kowler, 1989; Kowler, 2011; Najemnik & Geisler, 2005; Zelinsky,
1996) to optimize the probability of finding the searched targets.

Rewards have potent effects on the behavior (Chelazzi et al.,
2014; Stritzke, Trommershäuser, & Gegenfurtner, 2009; Sullivan
et al., 2012; Theeuwes & Belopolsky, 2012; Trommershäuser,
Glimcher, & Gegenfurtner, 2009) and firing of neurons of animals
(Gold & Shadlen, 2002; Platt & Glimcher, 1999; Sugrue, Corrado,
& Newsome, 2004; Trommershäuser, Glimcher, & Gegenfurtner,
2009). When two perceptual tasks have differential implicit
rewards, humans adapt their gaze to the reward structure
(Sullivan et al., 2012). When the environment during visual search
presents a complex distribution of rewards associated with

http://dx.doi.org/10.1016/j.visres.2015.05.016
0042-6989/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: Vision & Image Understanding Lab, Department of
Psychological & Brain Sciences, University of California, Santa Barbara, United
States. Fax: +1 (805) 893 4303.

E-mail address: eckstein@psych.ucsb.edu (M.P. Eckstein).

Vision Research 113 (2015) 137–154

Contents lists available at ScienceDirect

Vision Research

journal homepage: www.elsevier .com/locate /v isres

http://crossmark.crossref.org/dialog/?doi=10.1016/j.visres.2015.05.016&domain=pdf
http://dx.doi.org/10.1016/j.visres.2015.05.016
mailto:eckstein@psych.ucsb.edu
http://dx.doi.org/10.1016/j.visres.2015.05.016
http://www.sciencedirect.com/science/journal/00426989
http://www.elsevier.com/locate/visres


directing the gaze at various locations or targets, humans tailor
their oculomotor planning (Liston & Stone, 2008; Navalpakkam
et al., 2010) to try to maximize the total amount of rewards gath-
ered by biasing their saccades towards the location/object with
higher reward. If the reward is earned when the observer fixates
a target that is hard to detect or discriminate, then humans and
animals use an optimal Bayesian strategy. On each trial the optimal
Bayesian strategy is to use the product of the reward of each loca-
tion (Liston & Stone, 2008; Navalpakkam et al., 2010), the prior
probability that each location contain the target, and the sensory
evidence that the target be present at the location to make a fixa-
tion to the possible target location with the maximum product
(saccade to maximum expected value; sMEV; Fig. 1a). Indeed, this
is optimal if the reward to the organism requires correct fixation of
the target location such as in many laboratory tasks (Liston &
Stone, 2008; Stritzke, Trommershäuser, & Gegenfurtner, 2009).
However, in the real world, an eye movement to an object (e.g., a
fruit) is seldom followed by an immediate reward. It is a
post-eye movement correct decision to localize the object and to
approach it that can result in obtaining the reward. The goal of
eye movements is not to fixate an object but to gather visual infor-
mation to support follow-up decisions or actions (Najemnik &
Geisler, 2005). An ideal reward searcher (IS, Fig. 1a) considers
foveating all possible locations and calculates the expected reward
of a decision following the fixation. The ideal reward searcher takes
into consideration not only target locations, reward structure, and
sensory evidence for target presence but also includes knowledge
of the display configuration and the varying target detectability
across retinal eccentricities (visibility map; Fig. 1b; (Najemnik &
Geisler, 2005) and see Legge, Klitz, & Tjan, 1997; Legge et al.,
2002; Peterson & Eckstein, 2012; Renninger et al., 2005 for related
models). In many circumstances, the IS will make eye movements
to the possible target location with highest expected value like the
sMEV model (Najemnik & Geisler, 2009; Zhang & Eckstein, 2010),
yet for other scenarios the models’ predictions will diverge.

There have been few studies investigating how rewarding
decisions influences human eye movements plans (but see,
Ackermann & Landy, 2010, 2013; Eckstein, Schoonveld, & Zhang,
2010), how the fixation changes impact the total rewards gathered,
and how human behavior compares to that of an ideal reward
searcher that takes into account the distribution of rewards and
the foveated nature of the human visual system. Ackermann and
Landy (2013) have shown that inhomogeneous rewards can influ-
ence human eye movements, but that their strategies are subopti-
mal relative to an ideal reward searcher. The study did not
dissociate an eye movement strategy consistent with an ideal
reward searcher (IS) from a saccade to maximum expected value
model (sMEV).

In this paper, we first evaluate whether humans modify their
eye movement strategies to increase rewards when only the
follow-up perceptual decision is rewarded (experiment 1). We
compare human fixations and decisions to an ideal reward
searcher and a model that makes eye movements to the location
with highest expected value (sMEV). In experiment 2, we designed
a search display configuration with four clustered low reward tar-
get locations, which dissociates eye movements of the two models,
and assess whether human eye movement plans are consistent
with saccades to the highest expected value (sMEV) or to locations
that maximize decision rewards (IS). In experiment 3, we vary the
reward assignments but maintain the spatial configuration of
experiment 2 so that the ideal reward searcher frequently fixates
the high reward locations. Experiment 3 serves to verify that
human eye movements towards the clustered cues (experiment
2) are not a fixed strategy irrespective of the optimality of such
oculomotor plans. Finally, we evaluate models with a variety of
eye movement strategies in experiment 2 and 3 and suggest that

for some displays different fixation distributions can lead to
near-optimal decision rewards and thus might explain why
humans adopt variable strategies for such displays.

2. Search task

We used an m-alternative forced choice localization task in
which a target (high contrast vertical Gabor) appeared in one of
m (m = 5 for experiment 1 and m = 6 for experiment 2 and 3) loca-
tions with equal probability. The remaining m � 1 locations con-
tained lower contrast vertical Gabor elements. During the brief
presentation for the display, the observer searched (with no eye
movement restrictions) for the higher contrast Gabor target and
after the presentation of a mask, the observer chose a location
for their final perceptual decision. Feedback is provided about
the correct target location after the trial ends. The associated
gained reward points for that trial and the entire experiment are
displayed. The contrasts of the Gabor elements were indepen-
dently perturbed with Gaussian contrast noise every 25 ms (see
methods for theoretical justification). Circular pre-cues (of differ-
ent colors or the same color) around the possible target locations
indicated the reward points associated with finding the target at
that location (see methods for more details). The spatial configura-
tion of the cues around a circle remained constant but rotated ran-
domly from trial to trial. We informed observers that their average
points per trial relative to other participants would determine a
percentage of total lottery tickets assigned to them for a lottery
of a $ 100 prize.

3. Theory

In this section we outline the two main models of eye move-
ments evaluated: the saccade to maximum expected value model
and the ideal searcher. For each trial, the two models generated
eye movements, temporally integrating visual information up to
75 ms before saccade generation, which is consistent with the
information driving saccade planning in humans (Caspi, Beutter,
& Eckstein, 2004; Ludwig, 2009).

3.1. Saccade to maximum expected value (sMEV)

The sMEV model is a natural extension of the saccadic targeting
model (or maximum a posteriori probability, MAP, Eckstein,
Beutter, & Stone, 2001; Najemnik & Geisler, 2008; Rao et al.,
2002) which directs its eye movement to the possible target loca-
tion with highest sensory evidence for the presence of the target.
The sMEV model extends the MAP model by taking into account
the value of rewards, which is integrated with sensory evidence,
and like the MAP model only fixates possible target locations.
The sMEV model directs its saccades on each trial towards the loca-
tion (among the M possible target locations) with the highest pro-
duct of the reward of each location, mi (Liston & Stone, 2008;
Navalpakkam et al., 2010), the prior probability that each location
contain the target, pi, and the sensory evidence that the target be
present at the location (likelihood ratio LR; (Beutter, Eckstein, &
Stone, 2003; Green & Swets, 1989; Navalpakkam et al., 2010).
The next eye movement, T + 1, is to the target location, k⁄, with
the maximum product (Fig. 1a):

k�sMEV ðT þ 1Þ ¼ arg max
i

miPkðTÞ;i ¼ arg max
i

mipi

YT

t¼1

LRkðtÞ;i ð1Þ

where Pk(T),i is the posterior probability of the target being at the ith
location given the current fixation at k(T) and is the product of the
likelihood ratio, LRk(t),i, and the prior probability (pi). For each fixa-
tion, the likelihood ratio for each ith location is given by:
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