
Determining the role of correlated firing in large populations of neurons using
white noise and natural scene stimuli

Marsha Meytlis 1, Zachary Nichols 1, Sheila Nirenberg ⇑
Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10065, United States

a r t i c l e i n f o

Article history:
Received 19 January 2012
Received in revised form 13 July 2012
Available online 3 August 2012

Keywords:
Correlations
Noise correlation
Retinal ganglion cell
Parallel processing
Information
Vision
Population coding
Decoding
Spike trains

a b s t r a c t

The role of correlated firing in representing information has been a subject of much discussion. Several
studies in retina, visual cortex, somatosensory cortex, and motor cortex, have suggested that it plays only
a minor role, carrying <10% of the total information carried by the neurons (Gawne & Richmond, 1993;
Nirenberg et al., 2001; Oram et al., 2001; Petersen, Panzeri, & Diamond, 2001; Rolls et al., 2003). A lim-
iting factor of these studies, however, is that they were carried out using pairs of neurons; how the results
extend to large populations was not clear. Recently, new methods for modeling network firing patterns
have been developed (Nirenberg & Pandarinath, 2012; Pillow et al., 2008), opening the door to answering
this question for more complete populations. One study, Pillow et al. (2008), showed that including cor-
relations increased information by a modest amount, �20%; however, this work used only a single retina
(primate) and a white noise stimulus. Here we performed the analysis using several retinas (mouse) and
both white noise and natural scene stimuli. The results showed that correlations added little information
when white noise stimuli were used (�13%), similar to Pillow et al.’s findings, and essentially no infor-
mation when natural scene stimuli were used. Further, the results showed that ignoring correlations
did not change the quality of the information carried by the population (as measured by comparing
the full pattern of decoding errors). These results suggest generalization: the pairwise analysis in several
species show that correlations account for very little of the total information. Now, the analysis with large
populations in two species show a similar result, that correlations still account for only a small fraction of
the total information, and, most significantly, the amount is not statistically significant when natural
stimuli are used, making rapid advances in the study of population coding possible.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In the last several years, there has been a great deal of interest
in whether correlations in spiking patterns carry important infor-
mation (e.g., Meister, Lagnado, & Baylor, 1995; Nirenberg et al.,
2001; Schneidman et al., 2006; Wu, Nakahara, & Amari, 2001; also
see reviews by Latham and Nirenberg (2005) and Averbeck, La-
tham, and Pouget (2006)). The question arises frequently because
the answer has critical bearing on the research approaches that
can be used to understand population coding. If these correlations
do carry information, then direct, i.e., brute force, approaches for
characterizing population activity cannot be used: one simply can-
not find the mapping from stimulus to response, as such a mapping
would require estimating response distributions in high dimen-
sions – at least N dimensions for N neurons. For populations of

more than 3 or 4 cells, the amount of data needed would be impos-
sibly large, and one would have to turn to indirect approaches,
such as estimating the response distributions with the correla-
tional structure modeled parametrically.

In contrast, if correlations do not carry unique information, di-
rect approaches become viable even for large populations. Under
these conditions, one can characterize the population response dis-
tributions from the single neuron distributions. This latter scenario
would allow much more rapid advances in the field of population
coding.

Much of the work addressing this issue has focused on pairwise
analyses. These studies, which include a broad range of neural
areas, showed that correlations carry little information – less than
10% of the total information carried by each pair (Gawne & Rich-
mond, 1993; Nirenberg et al., 2001; Oram et al., 2001; Petersen,
Panzeri, & Diamond, 2001; Rolls et al., 2003). How this result scales
with population size, however, is still a subject of debate. One pos-
sibility is that as population size increases, each pair will continue
to contribute about the same amount of information. Since the
number of pairs is proportional to the square of the number of
neurons, this scaling behavior predicts that for large populations,
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correlations could become a substantial or even dominant carrier
of information. Another alternative is that as the size of the popu-
lation grows, only some pairs contribute, or the contributions of
the individual pairs become redundant. In these scenarios, the cor-
relations would remain a small contributor to the total amount of
information.

Recently, methods for modeling the firing patterns of retinal
ganglion cells to white noise stimuli have been developed and used
to address this (Pillow et al., 2008). Analysis of the importance of
correlations using these models showed that correlations in-
creased information by a relatively small amount, �20%; however,
the work used only a single retina and a white noise stimulus; no
natural stimuli were used.

Here we performed the analysis using several retinas, large pop-
ulations of cells, and both white noise and natural stimuli. The re-
sults showed that correlations added little information when white
noise stimuli were used (�13%), similar to the results of Pillow
et al. (2008), and essentially no information when natural stimuli
were used. Thus, the second alternative is more likely the correct
one: correlations are a relatively minor contributor to the informa-
tion carried by populations of neurons – not only for neuronal
pairs, but also for whole populations. This is also consistent with
a smaller population study with natural scenes in salamander (Oiz-
umi et al., 2010). Thus, correlations likely play a different role in
network functioning (e.g., reinforcing network learning (reviewed
in Feldman (2009)) or shaping network development (reviewed
in Blankenship and Feller (2010))).

2. Methods

2.1. Defining correlations

Two types of correlations are commonly referred to in the liter-
ature. One is called ‘‘noise correlation’’ (Gawne & Richmond, 1993)
and is the focus of this paper. Neural responses r ¼ ðr1; . . . ; rnÞ are
noise-correlated if and only if

pðrjxÞ–
Yn

i¼1

pðrijxÞ;

where ðr1; . . . ; rnÞ are the individual neural responses that constitute
the population response r to the stimulus x.

The second type is called ‘‘signal correlation’’ (Gawne & Rich-
mond, 1993) and differs from noise correlation in that it takes
the average over all stimuli. Neural responses are signal-correlated
if and only if

pðrÞ–
Yn

i¼1

pðriÞ:

To provide intuition for what these two types of correlations
are, we give an example, following from Nirenberg and Latham
(2003). Suppose one presents a flash of light while recording from
two ON-type ganglion cells that lie far apart on the retina (such
that their receptive fields do not overlap). Because the cells are
both ON cells, they will both fire at the onset of the flash. The sim-
ilarity in their response is an example of signal correlations, and its
role in neural coding is clear and not disputed. If, though, the two
cells are close enough to receive common input from presynaptic
cells (e.g., common photoreceptors, amacrine cells, etc.), then they
would show correlations above and beyond the signal correlations.
These extra correlations are the noise correlations; their contribu-
tion to the information carried by the cells has become the subject
of much debate and is the focus of this paper.

2.2. Stimuli

The retinas were stimulated with two photopic, grayscale stim-
uli of identical luminance and contrast: binary spatio-temporal
white noise (WN) and a grayscale natural scene movie (NS). The
natural scene movie was recorded in New York City’s Central Park,
and had a temporal power spectrum of 1/f2.04, where f is temporal
frequency, and a spatial power spectrum of 1/x2.09, where x is
spatial frequency. Both were presented at 15 Hz, using an LCD pro-
jector driven by a computer running custom software on a real-
time version of Red Hat Linux. Luminance was 0.24 lW/cm2 on
the retina (in the photopic range); root-mean-squared contrast
was 0.087 lW/cm2. The white noise stimulus covered 10 � 9
squares (with each square corresponding to 160 � 160 lm on the
retina); the natural movie stimulus covered 20 � 18 squares (with
each square covering 80 � 80 lm on the retina). For each stimulus,
we had a training set, which was used to fit model parameters, and
a testing set, which was used for evaluating the models and mak-
ing calculations; the latter were referred to as the ‘‘out-of-sample
stimuli’’.

2.3. Measuring degree of correlation

The degree of correlation was measured using the excess corre-
lated fraction (ECF) following Nirenberg et al. (2001). For each pair
of cells, the ECF was calculated as follows: first, the ‘‘raw fraction’’
of correlated spikes was determined. This was the number of
spikes that occurred within 1 ms of each other divided by the total
number of spikes produced by the pair. A second quantity, the
‘‘shifted fraction’’, was then determined. It was obtained by pairing
responses from the two cells when they were presented with the
stimulus at different times, i.e., when their responses were shifted
by one repeat relative to each other (Perkel, Gerstein, & Moore,
1967). The shifted fraction was then calculated by counting the
number of spikes in the shifted pair that occurred within 1 ms of
each other and dividing this by the total number of spikes for the
pair. The ECF is then the difference between the raw and shifted
fraction.

Shift-corrected cross-correlograms were generated in a manner
similar to that described above for obtaining the ECF. Briefly, for
each pair of neurons, the raw cross-correlogram was first deter-
mined from the two cells’ simultaneously-recorded responses.
The ‘‘shift predictor’’ was calculated from their responses recorded
on separate repeats, and was then subtracted from the raw cross-
correlogram to yield the shift-corrected cross-correlogram (Perkel,
Gerstein, & Moore, 1967).

2.4. Independent and coupled models

Two models were constructed from the neural responses: one
in which the neurons were treated as independent, and one in
which coupling among the neurons was included. Each model con-
sisted of a set of parameters that were fit by maximizing the log-
likelihood of observed spiking data collected for 10 min using the
training stimulus set (see Section 2.2).

In the independent model (Fig. 2A), the mth neuron’s firing rate
was modeled by

kindependent
m ðtÞ ¼ Nm ðX � LmðtÞÞ þ

X
i

Hmðt � smðiÞÞ
" #

; ð1Þ

where X is the stimulus, � denotes spatiotemporal convolution, Lm is
the spatiotemporal impulse response corresponding to the linear
filter for the mth neuron, and Nm is a function that describes its non-
linearity. The nonlinearities Nm were parameterized as cubic spline
functions with six knots. Knots were spaced to cover the range of
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