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a b s t r a c t

This paper describes a method to reliably estimate latency of multifocal visual evoked potential (mfVEP)
and a classifier to automatically separate reliable mfVEP traces from noisy traces. We also investigated
which mfVEP peaks have reproducible latency across recording sessions. The proposed method performs
cross-correlation between mfVEP traces and second order Gaussian wavelet kernels and measures the
timing of the resulting peaks. These peak times offset by the wavelet kernel’s peak time represents the
mfVEP latency. The classifier algorithm performs an exhaustive series of leave-one-out classifications
to find the champion mfVEP features which are most frequently selected to infer reliable traces from
noisy traces. Monopolar mfVEP recording was performed on 10 subjects using the Accumap1™ system.
Pattern-reversal protocol was used with 24 sectors and eccentricity upto 33�. A bipolar channel was
recorded at midline with electrodes placed above and below the inion. The largest mfVEP peak and
the immediate peak prior had the smallest latency variability across recording sessions, about ±2 ms.
The optimal classifier selected three champion features, namely, signal-to-noise ratio, the signal’s peak
magnitude response from 5 to 15 Hz and the peak-to-peak amplitude of the trace between 70 and
250 ms. The classifier algorithm can separate reliable and noisy traces with a high success rate, typically
93%.

Crown Copyright � 2011 Published by Elsevier Ltd. All rights reserved.

1. Introduction

The multifocal visual evoked potential (mfVEP) has been investi-
gated as an alternative to subjective perimetry to detect defects in
small area of the visual field (Baseler et al., 1994; Graham, Klistorner,
& Goldberg, 2005; Hood, Ohri et al., 2004; Klistorner et al., 1998,
2007; Wangsupadilok et al., 2009). Previous works have shown that
the amplitude of the mfVEP traces can detect small localised defects
with high sensitivity and specificity in diseases such as glaucoma
(Baseler et al., 1994; Graham, Klistorner, & Goldberg, 2005; Hood,
Thienprasiddhi et al., 2004; Klistorner et al., 1998). This paper de-
scribes a method to estimate latency of mfVEP traces with low in-
ter-session variability. A classifier to automatically separate noisy
traces from reliable traces is also presented.

Latency has been used in conventional VEP to assess the visual
pathway in optic neuritis (Halliday, McDonald, & Mushin, 1972).
Ebers (1985) found that optic neuritis patients exhibited delay con-
duction of conventional full-field VEP and suspected that the delay
reflected demyelination of the optic nerve fibres. Latency of

multifocal visual evoked potential (mfVEP) traces provides an addi-
tional advantage since it can indicate localised severity of demye-
lination (Grover et al., 2008; Klistorner, Arvind et al., 2008;
Klistorner et al., 1998). However measurement of latency of mfVEP
traces has been a challenge due to low signal-to-noise (SNR) ratio
and variability of the traces’ profile. We use the term profile to refer
to the overall shape of the mfVEP trace waveform. To our knowl-
edge, only a few studies have proposed methods to quantify la-
tency of mfVEP traces (Hood, Ohri et al., 2004; Klistorner, Arvind
et al., 2008).

One method to measure latency is by manual inspection by 1–3
observers and then the mean value is taken. Prior to measuring the
latency, observers must first inspect the traces and exclude traces
that are deemed too noisy. A typical mfVEP session records traces
from at least 24 sectors, 4 channels and 2 eyes per patient, which
equates to 192 traces. These manual tasks are laborious. Hence
clinical applications of mfVEP latency become impractical.

Klistorner, Fraser et al. (2008) quantified the trace latency by
first selecting the mfVEP trace with the largest peak-to-peak
amplitude from four channels for each sector and eye. Then timing
of the second peak (minimum or maximum) was used as the trace
latency. This peak usually has the largest amplitude and occurs be-
tween 120 and 180 ms. Traces with low signal-to-noise ratio are
excluded from analysis (signal is defined as difference between
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minimum and maximum within interval of 70–210 ms and noise
defined as standard deviation of signal between 400 and 1000 ms.

Hood, Ohri et al. (2004) proposed another method to quantify
latency which can exclude certain traces whose SNR values are be-
low a specified threshold. The method first formed a template from
mfVEP traces collected from 100 subjects and measured the la-
tency of the mfVEP template. Then cross-correlation values be-
tween the template and a new mfVEP trace were evaluated.
Latency of the new mfVEP trace is equal to the time of the largest
cross-correlation plus the latency of the mfVEP template. The
authors raised an important challenge on treating traces from the
same sector and eye that have reversed polarity. This reversal
could be due to noise or real physiological activities resulting from
unique folding of the visual cortex. In addition, this method re-
quires users to have a large database of mfVEP traces in the first
place. Furthermore, since different visual stimuli would yield
mfVEP traces with different characteristics, a new set of database
is required when the visual stimulus is changed.

Our investigation arises from the need to estimate mfVEP la-
tency with good reproducibility given a small pool of data. If we
only wish to estimate the progression in latency, we could imme-
diately evaluates the cross-correlation of mfVEP traces from two
recording sessions. The timing of the maximum cross-correlation
then corresponds to the relative latency between the two sessions.
Applying this technique to our data produced a relative latency of
0.5 ± 3.2 ms. (Note that the sampling interval was 2.2 ms and so
the standard deviation is about 1 sample.) Various methods to esti-
mate the relative latency have been investigated rigorously (e.g.
Kong & Thakor, 1996; Rog & Kaufman, 1994). These techniques
are useful in following up progression of diseases but they do not
provide the actual latency.

We attempted the template-based approach in Hood, Ohri et al.
(2004) and could obtain mfVEP latency with reasonable reproduc-
ibility. However the latency variability across subjects was quite
high since in some traces/subjects, the first peak around 100 ms
yielded better reproducibility than the second peak around
150 ms but in other traces/subjects, the opposite was true. This
was one of the key motivations to consider adopting pre-deter-
mined templates whose largest peak lie between 100 ms and
150 ms. This also allowed us to investigate which peaks would
yield good reproducibility. Furthermore, we only had a small pool
of data available (seven subjects) for generating the templates for
each sector. After filtering out the noisy traces, often we only had
five subjects with good traces. But in the peripheral sectors where
the signal-to-noise ratio is usually low, only 1–2 subjects provided
good traces. Another challenge is that the latency of the template
traces have to be manually estimated.

This paper provided three contributions. The first contribution is
a method to estimate mfVEP latency by performing cross-
correlation with wavelet kernels that model the mfVEP trace pro-
file. (Note that the cross-correlation operation with wavelet kernels
is essentially a wavelet transform.) Since we do not create a mfVEP
template, we do not have the issue of averaging traces that may
have reversed polarity. There are two key advantages. Firstly there
is no need for a large database of mfVEP traces. Secondly, there is no
need for manually estimating the template latency since the peak of
the wavelet kernels are predetermined. The second contribution is
to investigate which mfVEP peaks can provide reproducible estima-
tion of latency.

The last contribution is a technique to design a classifier to sep-
arate reliable traces from noisy traces in order to estimate overall
latency accurately. The technique follows the general framework
regularly used in brain computer interface (BCI) (see Wolpaw
et al. (2002) for a review). The framework consists of two main
stages, namely, feature extraction and classification. In the feature
extraction stage, the EEG or event-related responses are converted

into a series of variables (features). For example, the features can
be peak amplitude, magnitude at predefined frequency bands,
etc. In the classification stage, the features are classified to a partic-
ular group. In BCI, classification to one group sends a predefined
command to the target device while classification to another group
sends a different command. The classification stage may employ a
linear or non-linear algorithm (e.g. linear discriminant analysis or
neural network) (Krauledat et al., 2008; Müller et al., 2008;
Pfurtscheller et al., 2000; Wolpaw, McFarland, & Vaughan, 2000).
The classifier is usually trained using a set of features that have
been associated to a set of groups.

2. Methods

2.1. Latency estimation

Latency of a mfVEP trace is estimated by first cross-correlating
the trace with a wavelet kernel. Let Rxw denote the cross-correla-
tion values between the mfVEP trace and a wavelet kernel, defined
as

Rxw½m� ¼
1
N

XN�1

n¼0

x½n�w½n�m�; m ¼ �N þ 1; . . . ;N � 1

where x and w denote a mfVEP trace and wavelet kernel
respectively.

Then the latency is equal to the time at which the cross-
correlation magnitude is largest offset by the time at which the
wavelet magnitude is largest. That is, let s denote the latency in
unit of samples and is defined as

s ¼ arg max
m
jRxw½m�j þ arg max

n
w½n�

where ‘‘argmax’’ denotes index that maximizes the function. We
use the absolute magnitude of Rxw to compensate for traces that
may be out-of-phase with the wavelet kernel (i.e. traces with re-
versed polarity). To convert the latency to time unit, s must be di-
vided by the sampling rate.

Fig. 1 illustrates an example of the latency estimation. Fig. 1A–C
shows a mfVEP trace, a wavelet kernel and the cross-correlation

Fig. 1. An example of estimating latency of mfVEP trace using cross-correlation
with Gaussian wavelet kernel. (A) mfVEP trace. (B) Second order Gaussian wavelet
kernel with peak at 120 ms. (C) Cross-correlation of the mfVEP trace with the
Gaussian wavelet kernel. The positive peak indicated occurs at 35 ms.
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