
Knowledge-Based Systems 100 (2016) 200–211 

Contents lists available at ScienceDirect 

Knowle dge-Base d Systems 

journal homepage: www.elsevier.com/locate/knosys 

Online fitted policy iteration based on extreme learning machines 

Pablo Escandell-Montero 

a , ∗, Delia Lorente 

b , José M. Martínez-Martínez 

a , 
Emilio Soria-Olivas a , Joan Vila-Francés a , José D. Martín-Guerrero 

a 

a Intelligent Data Analysis Laboratory (IDAL), Electronics Engineering Department, University of Valencia, Av. de la Universitat s/n, Burjassot, 46100 Valencia, 

Spain 
b Centro de Agroingeniería, Instituto Valenciano de Investigaciones Agrarias (IVIA), Crta. Moncada-Náquera km 5, Moncada, 46113 Valencia, Spain 

a r t i c l e i n f o 

Article history: 

Received 2 July 2015 

Revised 29 December 2015 

Accepted 8 March 2016 

Available online 14 March 2016 

Keywords: 

Reinforcement learning 

Sequential decision-making 

Fitted policy iteration 

Extreme learning machine 

a b s t r a c t 

Reinforcement learning (RL) is a learning paradigm that can be useful in a wide variety of real-world 

applications. However, its applicability to complex problems remains problematic due to different causes. 

Particularly important among these are the high quantity of data required by the agent to learn useful 

policies and the poor scalability to high-dimensional problems due to the use of local approximators. 

This paper presents a novel RL algorithm, called online fitted policy iteration (OFPI), that steps forward 

in both directions. OFPI is based on a semi-batch scheme that increases the convergence speed by reusing 

data and enables the use of global approximators by reformulating the value function approximation as 

a standard supervised problem. The proposed method has been empirically evaluated in three bench- 

mark problems. During the experiments, OFPI has employed a neural network trained with the extreme 

learning machine algorithm to approximate the value functions. Results have demonstrated the stabil- 

ity of OFPI using a global function approximator and also performance improvements over two baseline 

algorithms (SARSA and Q-learning) combined with eligibility traces and a radial basis function network. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Reinforcement learning (RL) is a learning paradigm in the field 

of machine learning for solving decision-making problems where 

decisions are made in stages [1] . This kind of problems appears in 

many fields, such as medicine [2,3] , automatic control [4,5] , arti- 

ficial intelligence [6,7] , or operations research [8,9] . The standard 

RL setting consists of an agent (or controller) in an environment 

(or system). Each decision (also called action) produces an imme- 

diate reward. The agent learns to perform actions in order to max- 

imize the reward accrued over time. The goal is defined by the 

user through the reward function. Contrary to other approaches, 

RL does not require a mathematical model of the system, but it is 

based on experience (or data). The agent acquires experience in- 

teracting with the environment. Fig. 1 represents the main RL ele- 

ments and how they interact. At each stage or discrete time-point 

k , the agent receives the environment’s state, and on that basis it 

selects an action. As a consequence of its action, in the next time 

step, the agent receives a numerical reward and the environment 

evolves to a new state. The agent selects actions depending on the 

∗ Corresponding author. Tel.: +34 963543421; fax: +34 963544353. 

E-mail address: pablo.escandell@uv.es (P. Escandell-Montero). 

environment state using a policy that assigns an action to every 

state. Typically, the agent modifies the policy as a result of the in- 

teractions with the environment. The objective of the agent is to 

find an optimal policy. 

Many RL algorithms rely on value functions to find optimal poli- 

cies. Given a policy, the value function estimates the long-term re- 

ward obtained by the agent when it follows that policy. Classical 

RL methods are limited to discrete, small problems because they 

require exact representations of value functions. However, in most 

realistic problems the environment state space is large or infinite 

(e.g., if state variables are continuous). In such cases, value func- 

tions must be approximated. 

Function approximators can be classified according to their gen- 

eralization capabilities as global or local. In global approximators 

(e.g. multilayer perceptron or support vector machines) a change in 

the parameters induced by an update in a certain part of the input 

space might influence the values of any region of the output space. 

On the contrary, a change in the input space of a local approxima- 

tor (e.g., radial basis network (RBF) or k -nearest-neighbor) only af- 

fects to a localized region of the output space [10] . Although global 

approximators a priori may have very positive effects in combi- 

nation with RL algorithms [11] , they usually lead to poor results 

even in very simple cases compared to local approximators [12,13] . 

This is due to the fact that, when the data acquired during the last 

http://dx.doi.org/10.1016/j.knosys.2016.03.007 

0950-7051/© 2016 Elsevier B.V. All rights reserved. 

http://dx.doi.org/10.1016/j.knosys.2016.03.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2016.03.007&domain=pdf
mailto:pablo.escandell@uv.es
http://dx.doi.org/10.1016/j.knosys.2016.03.007


P. Escandell-Montero et al. / Knowledge-Based Systems 100 (2016) 200–211 201 

Fig. 1. Basic elements of RL and their flow of interaction. 

agent-environment interaction are used to update the parameters 

of the approximator, they are adjusted to learn the value function 

at one particular region. However, unpredictable changes may also 

occur at other regions of the value function [11] . 

A possible solution to tackle the limitation of global approxi- 

mators is to accumulate a set of experiences large enough to be 

representative of the complete state-space and update the entire 

value function at the same time. In this sense, Ernst et al. [14] , 

based on previous works by Gordon [15] and Ormoneit and Sen 

[16] , proposed a new reinforcement learning scheme where the de- 

termination of the value function was reformulated as a sequence 

of standard batch-mode supervised learning problems. Their algo- 

rithm, called fitted Q iteration (FQI), works offline and is based on 

value iteration , this being one of the two main classes of RL algo- 

rithms. The other central class of algorithms is policy iteration . Both 

classes of algorithms are topics of current research and widely 

used. Nevertheless, policy iteration typically converges using fewer 

iterations despite it is computationally more demanding than value 

iteration [1,17,18] . This paper extends the main ideas of FQI to an 

online, policy iteration algorithm, which can be reliably combined 

with global approximators and speeds up learning by reusing the 

acquired data. 

In contrast to FQI, the proposed algorithm works online using a 

semi-batch approach. Therefore, the function approximator should 

be fast enough to fulfill the time restrictions imposed by online 

learning. In this context, during the experiments carried out to 

evaluate the proposed method, a neural network trained with the 

extreme learning machine (ELM) algorithm was employed to ap- 

proximate the value functions. ELM is a method for training single- 

hidden layer feedforward neural networks (SLFNs) that provides an 

extremely fast learning speed [19] . 

The rest of this paper is organized as follows. Section 2 presents 

the required background in Markov decision processes and rein- 

forcement learning. Section 3 introduces briefly extreme learning 

machine. The details of the proposed algorithm are described in 

Section 4 . Section 5 discusses the relation of the proposed algo- 

rithm with similar methods. In Sections 6 and 7 , the experiments 

and results are presented, respectively. Finally, the conclusions are 

drawn in Section 8 . 

2. Reinforcement learning 

The reinforcement learning problem can be formalized using 

the Markov decision processes (MDPs) [20] framework. Firstly, this 

section introduces the RL problem using MDPs. Then, the classical 

algorithm policy iteration is described briefly. 

2.1. Markov decision processes 

An MDP is defined by the tuple { S, A, P, ρ}, where S is the 

state space of the process, A is the action space, P the transi- 

tion probability function P : S × A × S → [0, 1) that gives the 

probability of the next state as a result of the chosen action, and 

ρ : S × A × S → R is the bounded reward function [20] . Here, S 

models the possible states of the environment and A includes 

the actions that can be performed by the agent. Let k denote 

the current stage or time step. Once the action a k is applied to 

the state s k , the next state s k +1 is determined by the transition 

probability function P . The agent selects actions according to its 

policy π : S → A which drives the action selection process. Each 

transition generates an immediate reward r k +1 = ρ(s k , a k , s k +1 ) . 

The reward evaluates the immediate effect of the transition, but it 

does not provide information about its long-term effects [18] . 

The goal of the agent is to learn a policy that maximizes the 

return (e.g. the sum of rewards received over time). Such a maxi- 

mization policy, denoted by π ∗, is said to be optimal. For an initial 

state s 0 and under the policy π , the expected infinite-horizon dis- 

counted return 

1 is [21] : 

R 

π (s 0 ) = lim 

K→∞ 

E s k +1 | s k ,π (s k ) 

{ 

K ∑ 

k =0 

γ k ρ(s k , π(s k ) , s k +1 ) 

} 

(1) 

where γ ∈ [0, 1) is the discount factor. This parameter can be intu- 

itively interpreted as a way to balance the immediate reward and 

future rewards. Future rewards are more relevant for the calcula- 

tion of the return when γ approaches 1. 

The quality of a policy π can be measured using its state- 

action value function Q 

π : S × A → R (commonly referred to as 

Q-function). The Q-function is defined as the total expected dis- 

counted reward that is encountered starting from state s , taking 

action a and thereafter following policy π [18] : 

Q 

π (s, a ) = E s ′ | s,a 
{
ρ(s, a, s ′ ) + γ R 

π (s ′ ) 
}

(2) 

where s ′ is the state reached after taking action a in the state s . 

Due to the Markov property, the Q-function of a policy π satis- 

fies the Bellman equation [18] : 

Q 

π (s, a ) = E s ′ | s,a 
{
ρ(s, a, s ′ ) + γ Q 

π (s ′ , a ′ ) 
}

(3) 

The optimal Q-function is defined as Q 

∗(s, a ) = max π Q 

π (s, a ) , 

i.e., the best Q-function that can be obtained from any policy. From 

the optimal Q-function, an optimal policy can be easily derived 

choosing in each state the action that maximizes Q 

∗: 

π ∗(s ) = arg max 
a 

Q 

∗(s, a ) (4) 

In general, for a given Q-function, a policy that maximizes Q in 

this way is said to be greedy in Q . Therefore, a given MDP can be 

solved (i.e. finding an optimal policy) by first finding Q 

∗, and then 

using Eq. (4) to compute a greedy policy in Q 

∗. This methods are 

collectively known as value function methods . 

2.2. Policy iteration 

Policy iteration (PI) is one of the major approaches used in RL to 

solve MDPs [23] . This section introduces some relevant theoretical 

results from the classical policy iteration algorithm, which will be 

used in Section 4 to derive the proposed algorithm. 

Policy iteration consists in using an iterative process to con- 

struct a sequence of policies that are monotonically improved. 

Starting with an arbitrary policy π0 , at iteration l > 0, the al- 

gorithm computes the Q-function underlaying π l (this step is 

called policy evaluation). Then, given Q 

πl , a new policy πl+1 that 

is greedy with respect to Q 

πl is found (this step is called policy 

improvement). Fig. 2 depicts schematically the policy iteration 

algorithm [24] . When the state-action space is finite and exact 

representations of the value function and policy are used (usually 

1 Although there are several types of returns, this work only focuses on infinite- 

horizon discounted return due to its useful theoretical properties. For a discussion 

of these properties and other types of returns, see [21,22] . 



Download English Version:

https://daneshyari.com/en/article/403434

Download Persian Version:

https://daneshyari.com/article/403434

Daneshyari.com

https://daneshyari.com/en/article/403434
https://daneshyari.com/article/403434
https://daneshyari.com

