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a b s t r a c t

To represent the local orientation and energy of a 1-D image signal, many models of early visual process-
ing employ bandpass quadrature filters, formed by combining the original signal with its Hilbert trans-
form. However, representations capable of estimating an image signal’s 2-D phase have been largely
ignored. Here, we consider 2-D phase representations using a method based upon the Riesz transform.
For spatial images there exist two Riesz transformed signals and one original signal from which orienta-
tion, phase and energy may be represented as a vector in 3-D signal space. We show that these image
properties may be represented by a Singular Value Decomposition (SVD) of the higher-order derivatives
of the original and the Riesz transformed signals. We further show that the expected responses of even
and odd symmetric filters from the Riesz transform may be represented by a single signal autocorrelation
function, which is beneficial in simplifying Bayesian computations for spatial orientation. Importantly,
the Riesz transform allows one to weight linearly across orientation using both symmetric and asymmet-
ric filters to account for some perceptual phase distortions observed in image signals – notably one’s per-
ception of edge structure within plaid patterns whose component gratings are either equal or unequal in
contrast. Finally, exploiting the benefits that arise from the Riesz definition of local energy as a scalar
quantity, we demonstrate the utility of Riesz signal representations in estimating the spatial orientation
of second-order image signals. We conclude that the Riesz transform may be employed as a general tool
for 2-D visual pattern recognition by its virtue of representing phase, orientation and energy as orthog-
onal signal quantities.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In many signal processing applications, the 1-D analytic repre-
sentation of a real-valued function-defined by the linear combina-
tion of the original function and its Hilbert transform (Gabor,
1946; Franks, 1968; Papoulis, 1991) — is regarded as an important
step because it leads to a complex signal representation from which
the phase, energy and (instantaneous) frequency of a 1-D signal
may be estimated. Analytic signal representations are also thought
to be embedded within neural systems: Marcelja (1980), noting the
similarity between receptive field profiles of V1 neurons and sym-
metric/asymmetric Gabor functions, was an early proponent of this
idea. Marcjela’s observations inspired a number of computational
models of human vision, each designed to provide an economical
means of processing the phase and amplitude of 1-D signals
using a basis set of symmetric and asymmetric filter profiles (e.g.

Daugman, 1985; Morrone, Ross, Burr, & Owens, 1986; Morrone &
Burr, 1988).

How one generalizes the 1-D definition of a signal’s absolute
phase and energy into 2-D has, however, proven to be a challeng-
ing problem (Knutsson, 1982; Morrone & Owens, 1987; Morrone &
Burr, 1988; Nordberg, 1994; Robbins & Owens, 1997). Some have
extended the 1-D definition of the analytic signal into 2-D using
orientation and spatial frequency tuned filters arranged in a polar
form, such that Hilbert transforms are taken about an axis orthog-
onal to the preferred orientation tuning of each filter (Daugman,
1985; Freeman & Adelson, 1991; Knutsson, 1982). Computational
models arising from a polar decomposition have, however, concen-
trated on phase independent signal representations. A popular
example is the energy model (e.g. Adelson & Bergen, 1985; Knuts-
son, 1982; Langley & Atherton, 1991; Morrone & Burr, 1988), in
which the response of an orientation tuned filter and its Hilbert
transform are first squared, then assigned an orientation label from
which a spatial orientation vector is estimated. By definition, the
energy model gives no information about how a 2-D image signal’s
spatial phase is represented. However, when detecting an image
signal’s features, the congruency of spatial phase, especially when
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compared across different spatial scales, allows one to distinguish
between edges and lines (e.g. Burr, Morrone, & Spinelli, 1989;
Canny, 1986; Georgeson, 1992; Georgeson & Meese, 1997; Kovesi,
2000; Watt & Morgan, 1985). While often overlooked, there is little
argument that the explicit representation of a signal’s 2-D phase
may be of utility to vision systems.

Recent work in image processing has advanced a number of
promising algorithms capable of extending the 1-D analytic signal
into 2-D, thus enabling the computation of an image signal’s 2-D
phase (Felsberg & Sommer, 2001; Felsberg, 2002; Kovesi, 2000;
Mellor & Brady, 2005; Zang & Sommer, 2007). One exciting idea
is to consider the Riesz transform as a generalization of the Hilbert
Transform. The simultaneous representation of 2-D phase and ori-
entation is made possible because the analytic signal in the Riesz
domain is defined by the number of signal dimensions plus one.
The purpose of this paper is to introduce the Riesz transform and
demonstrate its various benefits in the estimation of: (i) 2-D phase;
(ii) phase-dependent and phase-independent spatial orientation
vectors; and (iii) orientation defined by second-order signals. We
also outline the benefits of Riesz signal representations for Bayes-
ian computations. In presenting our paper, we first define the Riesz
transform. We then consider implementations of the Riesz trans-
form insofar as neural systems are concerned, before extolling its
computational virtues in the results section.

2. The Hilbert transform

Here, the Hilbert Transform is briefly reviewed before consider-
ing its generalization, known as the Riesz transform (Felsberg &
Sommer, 2001; Felsberg, 2002; Zang & Sommer, 2007). The Hilbert
transform of a 1-D signal f(t), is denoted by f̂ ðtÞ and defined by a
convolution integral whose interpretation is best understood by
taking Fourier transforms (?FT), as the following steps show:

f̂ ðtÞ ¼ f ðtÞ � 1
pt
¼ 1

p

Z 1

�1

f ðsÞ
t � s

ds!FT j sgn½x�FðxÞ ð1Þ

where the multiplicative function sgn[x], which defines the 1-D
Hilbert transform, is depicted in Fig. 1A by the black line. From
the far right expression of Eq. (1) note that the Hilbert transform
shifts the phase of the original signal by p

2 radians (Bracewell,
1999). Examples of a real signal and its Hilbert transform are shown
in Fig. 1A by the functions F(x)(Red curve)1 and bF ðxÞ (Blue curve),

respectively. From the figure, and when excluding the mean of the
real signal, note that the frequency support of both the original
and Hilbert transformed signals are equal.

2.1. The monogenic signal

The monogenic signal is a representation derived from a gener-
alization of the 1-D Hilbert transform to a higher dimensional sig-
nal space (Felsberg & Sommer, 2001; Zang & Sommer, 2007). A
generalization is made possible by the Riesz transform (Riesz,
1928), which is defined as:

R½Iðx; yÞ�!FT j
k
jkj
bIðkÞ ð2Þ

with R½:� the Riesz operator, k = [k1, k2]
0
the signal dimensions in the

frequency domain, and I(x, y) the original (untransformed) image
signal. Note that the Riesz operator augments spatial image signals
by adding two orthogonal Riesz transformed signals. In a similar
vein to the Hilbert transform, the Riesz transform may be under-
stood in the frequency domain by the multiplication of the original
signal with j k

jkj. One such Riesz operator is shown in Fig. 1B. Evalu-

ating the Riesz transform about the k1 axis, where k2 = 0, gives
signðk1Þ ¼ k1

jk2
1þ0j

1
2

which is equal to the Hilbert transform for 1-D sig-

nals. This computation can be visualized by tracing along the k2 = 0
contour in Fig. 1B. For a signal space Rn, there exist n Riesz filters.
Thus the Riesz transform of a two-dimensional image signal gives
a 3-D vector:

Rðx; yÞ ¼ Iðx; yÞ; Ijxjðx; yÞ; Ijyjðx; yÞ
� �

ð3Þ

where I(x, y) is the original signal and Ijxj(x, y), Ijyj(x, y) represent the
Riesz transformed signals taken about the jxj and jyj axes,
respectively.

From the Riesz triple vector R(x, y), an image signal’s energy is
defined by:

Eðx; yÞ ¼ Iðx; yÞ2 þ Ijxjðx; yÞ2 þ Ijyjðx; yÞ2 ð4Þ

and by definition:

E½Iðx; yÞ2� ¼ E½Ijxjðx; yÞ2� þ E½Ijyjðx; yÞ2� ð5Þ

where E½:� denotes the expectation operator. From Eq. (4) note that
the Riesz energy is defined by a sum of squares of the three ele-
ments of the Riesz triple vector (Felsberg & Sommer, 2001; Felsberg,
2002; Zang & Sommer, 2007). Eq. (5) follows from the definition of
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Fig. 1. (A): Shows the Fourier transformed Hilbert operator 1
px!FT j k1

jk1 j
¼ j sgnðk1Þ (black curve), a real signal (red curve) and its Hilbert transform (blue dashed curve). Note

that the Hilbert transform may be understood as a flipping in sign of filter sensitivity about the origin in frequency space. The change in sign alters the phase of a signal by p
2

but the envelope (energy spectrum) for non-zero frequencies is preserved. (B): Illustrates one of the two Riesz transform operators that may be applied to 2-D image signals.
In the frequency domain, the Riesz transform is equivalent to a multiplication of an original signal by the operator j ki

ðk2
1þk2

2 Þ
1
2

with i = 1,2.

1 For interpretation of color in Figs. 1, 2, 4, 6, 9, 10 the reader is referred to the web
version of this article.
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