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a b s t r a c t

Before deploying a recommender system, its performance must be measured and understood. So eval-

uation is an integral part of the process to design and implement recommender systems. In collabora-

tive filtering, there are many metrics for evaluating recommender systems. Mean Absolute Error (MAE)

and Root Mean Square Error (RMSE) are among the most important and representative ones. To calculate

MAE/RMSE, predicted ratings are compared with their corresponding true ratings. To predict item ratings,

similarities between active users and their candidate neighbors need to be calculated. The complexity for

the traditional and naive similarity calculation corresponding to user u and user v is quadratic in the

number of items rated by u and v. In this paper, we explore the mathematical regularities underlying

the similarity formulas, introduce a novel data structure, and design linear time algorithms to calculate

the similarities. Such complexity improvement shortens the evaluation time and will finally contribute

to increasing the efficiency of design and development of recommender systems. Experimental results

confirm the claim.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Recommender systems are popular facilities widely deployed to

address the challenge of overwhelming information. They are used

to seek interesting information to targeted users from a large vol-

ume of data. Typical domains where we can see their real-world

applications include E-commerce [1,2], E-government [3,4], Social

Network [5–7], Academia [8–11], Entertainment [12,13], Telecom

[14,15], and so on. Readers can see the comprehensive progress in

this topic in a recently published survey paper [16].

There are three basic methods to generate recommendations:

collaborative filtering (CF), content-based filtering, and a hybrid ap-

proach. CF recommendation aims to produce a list of interesting

items to active users based on the preferences of their like-minded

neighborhood. Content-based filtering approaches utilize a series

of discrete features of items, e.g., the genres, directors, and actors

of movies, to generate recommendations. These two approaches

are often combined to make hybrid recommender systems [17,18].
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A CF recommender system generally works in three steps. First,

it calculates the similarities (cosine similarity, adjusted cosine sim-

ilarity, Pearson correlation similarity, et al.) between the active

user and other users. Second, it selects the active user’s nearest

neighbors based on the similarities obtained from the first step.

Third, it recommends a list of top-k items by aggregating the near-

est neighbors’ preferences.

CF is generally believed to be one of the most successful tech-

niques applied in recommender systems. A flowchart to illustrate

the process of designing a recommender system is shown in Fig. 1.

It should be emphasized that evaluation is an important and in-

alienable part of designing a good CF algorithm. There are many

metrics to evaluate the performance of recommender systems.

Mean Absolute Error (MAE) and Root Mean Square Error (RMSE)

are among the most popular ones.

Given the N actual/predicted rating pairs (ru, i, pu, i), where u

refers to a user and i to an item, the MAE of the N pairs is

evaluated as:

MAE = |∑N
i=1(pu,i − ru,i)|

N
(1)
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Fig. 1. Flowchart of the Design of a Recommender System.

and the RMSE of the N pairs is evaluated as:

RMSE =
√∑N

i=1(pu,i − ru,i)2

N
(2)

Note that lower MAE and RMSE values indicate more accu-

rate predictions, signifying better performance of recommender

systems.

To evaluate MAE/RMSE, four steps need to be conducted:

(1) Divide the dataset into a test set (acting as active users, sim-

ilarly hereinafter) and a training set.

(2) Compute and select top-k nearest neighbors in the training

set based on a similarity metric, for a rated item of the cur-

rent test user in the test set.

(3) Aggregate the ratings of the top-k nearest neighbors to cal-

culate a prediction for the item.

(4) Repeat Step (2) and Step (3) until the prediction for every

rated item of every user in the test set is calculated, and

then compute MAE and/or RMSE for the test users.

Essentially, the major effort of our work is to shorten the time

spent in the similarity calculation of Step (2).

1.1. Motivation

A flowchart to illustrate the design process of recommender

systems is illustrated in Fig. 1. As we have pointed out, evalua-

tion is an inalienable part of the design process. Since the scale

of datasets is large, evaluation generally costs much time, which is

mechanically spent on the running of recommender systems and is

with a low technology content. Shortening the evaluation time can

save the designers from waiting for the evaluation done, let them

determine the performance more quickly, and focus on other work

with a high technology content.

CF research papers have published few technical details about

their evaluation processes. We have reviewed the major open

source recommender systems which use neighborhood-based CF,

such as Mahout1, LensKit2, Crab3, Python-recsys4, and easyrec5,

and we find that their MAE/RMSE evaluation procedures are either

flawed or they ignore efficiency.

In particular, given a user u in the test set and a user v in the

training set, two major problems in evaluating MAE/RMSE (com-

puting the similarities specifically) are described as follows:

1 http://mahout.apache.org/.
2 http://lenskit.org/.
3 http://muricoca.github.io/crab/.
4 http://ocelma.net/software/python-recsys/build/html/.
5 http://easyrec.org/home.

Fig. 2. Methods to Calculate Similarity Between users u and v.

(1) Incorrect method: The similarity between u and v is calcu-

lated only once, which is then used to help generate the |Iu|

predictions6. This means in the above Step (2), in case of

each rated item, the similarities between u and v are con-

sidered equal and are calculated only once, however, they

are not equal indeed! The method is illustrated in Fig. 2a.

A correct method to evaluate MAE/RMSE should include the

calculation of predictions for every item rated by user u.

For each prediction, there should be a unique similarity be-

tween u and v. In the end, the difference between the pred-

icated rating and the true rating can be used to evaluate the

MAE/RMSE.

The reason why the similarity should be calculated individu-

ally is that for each predicted rating, the corresponding true

rating in u should be treated as unknown.

(2) Correct but inefficient method: The similarities between u and

v are considered separately, varying for each rated item in u.

For each item rating prediction, the similarity is calculated

once, so there are |Iu| similarity calculations. Each time the

calculation is with complexity of O(|Iu| + |Iv|), so the whole

complexity for the |Iu| calculations is O(|Iu| × (|Iu| + |Iv|)).

The method is illustrated in Fig. 2b.

The objective of this work is to design efficient algorithms for

computing similarity in the process of evaluating recommender

systems, whose complexity is of O(|Iu| + |Iv|). In other words, the

|Iu| times of similarity calculations should be done in one iteration

of Iu and Iv respectively.

6 |Iu| denotes the size of the set of items rated by user u. Please refer to Table 1.
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