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a b s t r a c t

The vanishing gradients problem inherent in Simple Recurrent Networks (SRN) trained with back-

propagation, has led to a significant shift towards the use of Long Short-Term Memory (LSTM) and Echo

State Networks (ESN), which overcome this problem through either second order error-carousel schemes

or different learning algorithms, respectively.

This paper re-opens the case for SRN-based approaches, by considering a variant, the Multi-recurrent

Network (MRN). We show that memory units embedded within its architecture can ameliorate against

the vanishing gradient problem, by providing variable sensitivity to recent and more historic informa-

tion through layer- and self-recurrent links with varied weights, to form a so-called sluggish state-based

memory.

We demonstrate that an MRN, optimised with noise injection, is able to learn the long term depen-

dency within a complex grammar induction task, significantly outperforming the SRN, NARX and ESN.

Analysis of the internal representations of the networks, reveals that sluggish state-based representations

of the MRN are best able to latch on to critical temporal dependencies spanning variable time delays, to

maintain distinct and stable representations of all underlying grammar states. Surprisingly, the ESN was

unable to fully learn the dependency problem, suggesting the major shift towards this class of models

may be premature.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Recent studies have demonstrated that the ability to learn non-

linear temporal dynamic behaviour is a significant factor in the so-

lution of numerous complex problem-solving tasks, such as those

found in many practical problem domains e.g. natural language

processing [1,2,41,42,43], speech processing [3] and financial mod-

elling [4,5]. Recurrent neural networks (RNNs) are a class of con-

nectionist network whose computational neurons produce activa-

tions based on the activation history of the network [6]. RNNs have

nonlinear dynamics, allowing them to perform in a highly complex

manner; network activations from previous time steps are fed back

as input into the RNN at future time steps. In theory, the states of

the hidden units can store data through time in the form of a dis-

tributed representation, and this can be used many time steps later

to predict subsequent input vectors [7]. This particular character-

istic distinguishes them from their feedforward counterpart (the

Multi-layer Perceptron, MLP) and enables them to act as vector-

sequence transducers [6].
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Although there are numerous connectionist techniques for pro-

cessing temporal information, historically, the most widely used

RNN has been the Simple Recurrent Network (SRN) [1]. The SRN

is a state-based model, similar in complexity to a Hidden Markov

Model, and represents sequences of information as internal states

of neural activation [8]. The SRN has proven remarkably useful for

temporal problem domains such as natural language processing,

and in particular, learning to model regular and simple context-

free languages. Moreover, much research has been conducted to in-

vestigate the temporal processing ability of SRNs [8–15,35]. It has

been shown that in some cases, the SRN and its variants are un-

able to learn time lagged information (dependencies) exceeding as

few as 5 to 10 discrete time steps between relevant input events

and target signals [18]. This is most likely due to their use of gra-

dient descent learning where the gradient of the total output er-

ror, from previous input observations, vanishes quickly as the time

lag between relevant inputs and errors increases [17]. SRNs have

also been severely criticised for their lack of ability to model the

combinatorial systematicity of human language [16,36]. This, how-

ever, has cogently been refuted by Christiansen & MacDonald [47]

who demonstrate that the SRN is able to make non-local gener-

alisations based on the structural regularities found in the train-

ing corpus [3] and appropriate constituent-based generalisations,
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providing further support for non-parametric usage-based models

of language [48].

Researchers have investigated various architectural configura-

tions to enhance the memory capacity of SRNs. For example, Ul-

bricht [19] introduced the Multi-Recurrent Network (MRN), which

utilises variable-length memory banks with variable strength re-

current and self-recurrent links, to form a so-called sluggish state-

based memory mechanism. The integration of variable state acti-

vations with the replication of state nodes, to form memory banks

for representing temporal dependency, is a particularly distinctive

feature, relative to other models in the SRN family. Dorffner [20]

states that these sluggish state spaces can exploit the informa-

tion from both recent time steps and the distant past to form

a longer averaged history, and that this can help to solve long

term dependency problems. The MRN has been successfully used

to solve a number of complex prediction problems, yielding very

competitive results over traditional SRNs, and has also faired com-

petitively with Kernel methods [5,19]. These published results jus-

tify the additional connections and resulting complexity of the

MRN. Another approach which utilises additional memory units

within the architecture to overcome the vanishing gradient issue,

is the Nonlinear AutoRegressive model process with eXogenous in-

put (NARX) network, introduced by Lin et al. [34]. Unlike the MRN,

the NARX does not utilise past state information; it was introduced

to process temporal dependencies, primarily within the continu-

ous domain. The NARX network is essentially an RNN. It contains

feedback from the output layer and the input layer to create a con-

text layer. This context layer represents temporal information ex-

plicitly, in the form of a shift-register of the previous activations.

NARX networks therefore overcome the limitations of SRNs for en-

coding temporal dependency, by associating nodes with temporal

information rather than state activations.

Despite the promise shown by the MRN and NARX networks

over SRNs, there has been a strong shift away from the traditional

SRN family of networks and towards more complex second order

RNNs and those with different learning regimes. One such innova-

tion is the Long Short-Term Memory (LSTM) introduced by Hochre-

iter and Schmidhuber [37] and developed further by Gers et al.

[21]. This is a second-order RNN that consists of multiple recur-

rently connected subnets, called memory blocks. Each block con-

tains a set of internal units having activations controlled by three

multiplicative units (input gate, forget gate and output gate). This

block-based mechanism enables an error carousel to be formed

which enables the LSTM to latch on to appropriate error infor-

mation. The LSTM is considered to provide state-of-the-art per-

formance in numerous temporal modelling tasks, however with-

out appropriate external resets, internal unit values can grow un-

controllably, creating instability. Ad hoc reset methods may there-

fore be required which adds to the complication of the design

process.

Another type of RNN aimed at resolving the long temporal de-

pendency problem is the Echo-state Network (ESN). The ESN has

again exhibited state-of-the-art performance. It is similar in archi-

tecture to the SRN but it has an entirely different learning mech-

anism and so does not suffer from the vanishing or exploding

gradient problem [22]. Training is reduced to a one-shot simple

linear regression task applied to the output layer weights. ESNs

have been applied with varying success to numerous problem do-

mains such as behaviour classification, natural language processing

[23,42,43,44], and speech recognition [24]. ESNs are gaining partic-

ular popularity with those researchers seeking biologically plausi-

ble models of language and memory. For example, Dominey [42]

used ESN-like models to better capture the principles of neuro-

physiology and address the issue identified by Friederici [45] to

explore the role of subcortical structures in language processing.

In particular, Dominey suggested ‘corticostriatal plasticity plays a

role in implementing the structural mapping processes required for as-

signment of open-class elements to their appropriate thematic role’

and both Dominey [42] and Hinaut and Dominey [43] therefore

sought to apply ESNs to implement a mechanism for the real-

time parallel processing of conceptual and grammatical structures.

Indeed, Pascanu and Jaeger [44] recognise that Dominey’s earlier

work in cognitive neuroscience with the development of the Tem-

poral Recurrent Network (TRN) [41], independently discovered the

reservoir principle that underpins ESNs. Although state-of-the-art

performance has been reported with ESNs for the iterated pre-

diction of noiseless time series data, the usefulness of this for

discrete problem domains such as grammar induction (and state

representation) is questionable. Moreover, studies with ESNs for re-

alistic problem domains have revealed the difficulty of creating the

reservoir of interconnections (connections between hidden units)

in a systematic way for a given problem. It can take the explo-

ration of many reservoir configurations before a solution is found

[22,25]. Clearly, there is scope for advancing knowledge concerning

the strengths and weaknesses of ESNs for different types of prob-

lem and a need for a principled approach to ESN application, ap-

propriate to the problem domain in order to increase their utility.

In particular, it will be interesting to determine whether the ESN

learning algorithm is better able to discover the optimum solution

for a complex grammar induction task than gradient descent-based

learning methods used in traditional SRNs. This is important as

RNNs, including SRNs and ESNs, are theoretically capable of rep-

resenting universal Turing machines [46].

In this paper, we seek to ascertain whether the strong shift

away from the SRN family of models trained with gradient de-

scent for language acquisition tasks is premature. In particular,

we provide further exploration of the MRN variant of the SRN,

which appears to have gone largely unnoticed in the literature

since 1996. In particular, we are interested in whether the unique

MRN approach to associating temporal features with both nodes

and state values, is sufficient to endow SRNs with superior power

over ESNs enabling them to implicitly capture the sort of tem-

poral dependency over variable time delays that may be associ-

ated with a complex grammatical structure. If this is shown to

be the case, then this will have significant implications for cur-

rent models of human memory and sentence comprehension that

are dependent on ESN-like approaches, including those posed by

[23,42,43,44].

2. Network architectures

2.1. Elman’s Simple Recurrent Network

The SRN architecture employed in this study is depicted in

Fig. 1. The activations of the hidden units of the network from

time t are used as input to the network at time t + 1. Recurrent

Fig 1. Simple Recurrent Network.
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