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a b s t r a c t

An exoteric geometric mechanics model of ocular accommodation is detailed to elucidate the main ideas
of various ongoing modeling efforts. The present study derives solutions for the stretched state of the
ocular lens as it might appear during accommodation by using simple geometric arguments and a volume
constraint, rather than the more mathematically intensive theory of elasticity. Results show that geomet-
ric shapes similar to the lens will deform in a similar fashion. This implies that, while the true lens geom-
etry is somewhat more complex, it should also follow these qualitative behaviors.

Published by Elsevier Ltd.

1. Introduction

Accommodation is the ability of the eye to change its focal dis-
tance from far to near. von Helmholtz (1855) stated that the optical
power of the lens decreases as a result of increased equatorial
diameter. Presbyopia – the loss of accommodation amplitude with
age – has been investigated as extensively as accommodation it-
self. Its pathogenesis is likely multifactorial, resulting from changes
in lens mechanical properties (Fisher, 1971; Weeber & van der Hei-
jde, 2007), lens volume (Sakabe, Oshika, Lim, & Apple, 1998), lens
geometry (Fisher, 1969; Strenk, Strenk, Semmlow, & DeMarco,
2004), extralenticular anatomy, or a combination of these factors
(Weale, 1989).

A litany of experimental support has been obtained for the
Helmholtz theory of accommodation (e.g. Glasser & Kaufman,
1999; Hermans et al., 2009; Koretz, Handelman, & Brown, 1984;
Pierscionek, 1993; Reilly, Hamilton, & Ravi, 2008; Strenk et al.,
1999, 2004). Extensive mechanical modeling of the accommoda-
tive system has also been undertaken (Chien, Huang, & Schachar,
2006; Koretz & Handelman, 1982, 1986), with most recent works
utilizing finite element analysis (Burd, Judge, & Flavell, 1999,
2002; Belaidi & Pierscionek, 2007; Weeber & van der Heijde,
2007). However, these models are not generally accessible to the
broader ophthalmic community due to the use of the specialized
language of mechanics. These models also require detailed

mechanical properties as input data. The available data for human
lenses (Fisher, 1971; Heys, Cram, & Truscott, 2004; Weeber et al.,
2005; Weeber & van der Heijde, 2007) have been questioned due
to both modeling assumptions and treatment of the lens tissue
prior to testing (Burd, Wilde, & Judge, 2006; Schachar, 2005,
2007), implicitly calling the results of these models into question.
We have recently published data on the mechanical properties
and optomechanical performance of fresh 6-month-old porcine
lenses (Reilly & Ravi, 2009; Reilly, Hamilton, Perry, & Ravi, 2009),
though no mechanical model has yet been developed utilizing
these data.

Therefore, we propose a model based solely on geometric
parameters that may be readily understood and used to analyze
the role of changes in lens geometry with age as a potential cause
of presbyopia. This model is exoteric and should be accessible for
the larger ophthalmic community. Further, its only required input
data are the equatorial radius and axial thickness of the lens, which
are well known from experimental observations. This model com-
putes changes in optical parameters which occur due to changes in
lens equatorial diameter assuming constant lens volume.

2. Methods

2.1. Geometric descriptions

The mechanical models of lens stretching available in the liter-
ature utilize a variety of geometric descriptions for the lens. We
assumed that the lens is symmetric about the optical axis. Thus,
the lens may be completely described as a surface of revolution
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by specifying only the radial coordinate r and axial coordinate z,
which gives the cross-sectional profile of either the anterior or pos-
terior surface of the lens. We assume that the lens must maintain
the same geometric shape class (i.e. an ellipsoid lens must remain
an ellipsoid after stretching), and that the volume remains con-
stant during stretching (Hermans et al., 2009). Each geometric
shape class has a corresponding radius of curvature, surface area,
and volume which are geometrically related to its profile zðrÞ.

The initial equatorial radius a and axial thickness t for the hu-
man lens were taken as the average measured for 29-year-old
lenses as measured by Strenk et al. (1999) and Dubbelman et al.
(2005): 4.40 mm and 2.01 mm (half of the thickness of the whole
lens), respectively, for the human lens. Note that Strenk et al. mea-
sured the fully accommodated thickness as 3.96 mm, which is suf-
ficiently close to Dubbelman et al.’s result as to make no
discernable difference in the results. The initial parameters of the
six-month-old porcine lens were taken from Reilly et al. (2009):
5.02 mm and 3.93 mm for the equatorial radius and axial half-
thickness, respectively.

2.1.1. Spherical cap
The simplest geometry which may describe a lens-like object is

the spherical cap, which is simply a truncated sphere (Fig. 1A). The
functional form of its profile is given by

zðrÞ ¼ t � Rþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � r2

p
; ð1Þ

where a is the equatorial radius of the lens and t corresponds to the
half-thickness of the lens. The radius of curvature R of the spherical
cap is uniform everywhere and is given by

R ¼ a2 þ t2

2t
: ð2Þ

The surface area S is given by

S ¼ 2pRt: ð3Þ

The volume V of the spherical cap is given by

V ¼ p
6

tð3a2 þ t2Þ: ð4Þ

2.1.2. Paraboloid
The paraboloid (Fig. 1B) is similar to a spherical cap, though per-

haps with a slightly more realistic profile since R increases with the
radial coordinate r. The generating function is

zðrÞ ¼ t 1� r2

a2

� �
; ð5Þ

and the radius of curvature is given by

RðrÞ ¼ ð1þ 4t2r2=a4Þ3=2

2t=a2 : ð6Þ

The reported values for R were computed by averaging the re-
sult of Eq. (6) at 100 evenly spaced points within the optical zone
(i.e. within 1.5 mm radius of the optical axis). The surface area S is
given by

S ¼ pa
6t2 ða

2 þ 4t2Þ3=2 � a3
h i

: ð7Þ

The volume V is given by

V ¼ p
2

a2t: ð8Þ

2.1.3. Oblate spheroid
The spherical cap and paraboloid both exhibit discontinuity in

curvature at the equator. Therefore, this geometry is generally
not suitable for mechanical modeling purposes. The slightly more
complex oblate hemispheroid (Fig. 1C) gives a fairly accurate fit
for the lens surfaces, where each surface has a minor radius equal
to its thickness, t. The major radius, which corresponds to the

Fig. 1. Depiction of the cross-sections of (A) spherical cap, (B) paraboloid, and (C) oblate spheroid geometries, and (D) torispherical dome.
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