
Knowledge-Based Systems 90 (2015) 1–13

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Improving Recall of software defect prediction models using association

mining

Zeeshan Ali Rana a,b,∗, M. Awais Mian a, Shafay Shamail a

a CS Department, SBA SSE, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
b Faculty of IT, University of Central Punjab (UCP), Lahore, Pakistan

a r t i c l e i n f o

Article history:

Received 10 January 2015

Revised 4 October 2015

Accepted 6 October 2015

Available online 23 October 2015

Keywords:

Software defect prediction

Naive Bayes

PROMISE repository

Imbalanced data

Improving Recall

Association mining

a b s t r a c t

Use of software product metrics in defect prediction studies highlights the utility of these metrics. Public

availability of software defect data based on the product metrics has resulted in the development of defect

prediction models. These models experience a limitation in learning Defect-prone (D) modules because the

available datasets are imbalanced. Most of the datasets are dominated by Not Defect-prone (ND) modules as

compared to D modules. This affects the ability of classification models to learn the D modules more accu-

rately. This paper presents an association mining based approach that allows the defect prediction models

to learn D modules in imbalanced datasets. The proposed algorithm preprocesses data by setting specific

metric values as missing and improves the prediction of D modules. The proposed algorithm has been evalu-

ated using 5 public datasets. A Naive Bayes (NB) classifier has been developed before and after the proposed

preprocessing. It has been shown that Recall of the classifier after the proposed preprocessing has improved.

Stability of the approach has been tested by experimenting the algorithm with different number of bins. The

results show that the algorithm has resulted in up to 40% performance gain.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Early identification of defect-prone modules helps in improving

software process control, achieving reduced defect correction effort

and hence, reduced cost and high software reliability [1–4]. Managing

resources during testing is considered a non-trivial task [5] and the

identification of defect-prone modules helps in planning resources

during testing [5–7]. This identification is done using defect predic-

tion techniques that also help in controlling software projects and

developing resource and test plans [6,8].

Software defect prediction techniques either classify a software

module as Defect-prone (D) or Not Defect-prone (ND) or predict the

number of defects in a software. Both types of models take soft-

ware metrics as input. Significant number of software defect predic-

tion models are based on product metrics [9,10]. Use of product met-

rics for defect prediction has been criticized for being unable to find

causal relationship between the metrics and software defects [2,11].

Despite the critique metrics collected from static analysis have been

made publicly available [12] and have encouraged the development

of numerous prediction models. These metrics are available in the

∗ Corresponding author at: CS Department, SBA SSE, Lahore University of Manage-

ment Sciences (LUMS), Lahore, Pakistan. +92 3004239327.

E-mail addresses: zeeshanr@lums.edu.pk (Z.A. Rana), awais@lums.edu.pk

(M.A. Mian), sshamail@lums.edu.pk (S. Shamail).

form of datasets which are considered to be the benchmarks in the

domain of software quality. Availability of alternate benchmarks is

not well known.

Although the available datasets have been useful to develop mod-

els with good Recall (proportion of correctly predicted D modules

from all D modules) and Area Under the Curve (AUC can be considered

as probability that a model will give higher score to a randomly cho-

sen D module than to a randomly chosen ND module) [13–17], these

datasets have the following limitations: (1) they are imbalanced, (2)

the static code attributes available in the datasets have limited in-

formation content [13]. Most of the datasets have significantly larger

number of ND modules as compared to D modules. Smaller number

of D modules (as training examples) affects the ability of classifica-

tion models to learn the D modules more accurately. Class imbalance

is considered a problem in the domain of software defect prediction

[18–20] as well as in other domains [21–24]. The factor of limited

information content suggests that simple learners (like Naive Bayes)

can perform as good as any complex learners (such as J48) [13].

Classifying a D module correctly is very important in software de-

fect prediction. Software development organizations cannot afford to

ship defective modules to customers, therefore, they strive to detect

as many defective modules as possible before the release of software.

Significance of correctly identifying defect prone modules can be

seen through Pareto principle as applied in software engineering. The

principle says that 80% of the defects are located in 20% of code [25].

http://dx.doi.org/10.1016/j.knosys.2015.10.009

0950-7051/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.knosys.2015.10.009
http://www.ScienceDirect.com
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2015.10.009&domain=pdf
mailto:zeeshanr@lums.edu.pk
mailto:awais@lums.edu.pk
mailto:sshamail@lums.edu.pk
http://dx.doi.org/10.1016/j.knosys.2015.10.009


2 Z.A. Rana et al. / Knowledge-Based Systems 90 (2015) 1–13

Table 1

Two major views in software defect prediction.

View 1 View 2

Focus Use of all metrics. Classification models based on correlation etc. Causes of defects. Relationship between software metrics and defects.

Use of static code metrics Use as they are Suggest to incorporate expert opinion

Nature Empirical Expert opinion based

Availability of data Most of the times data is publicly available Most of the times data not publicly available

Examples of studies in each group [15,31–33,42–46] [2,11,47–49]

It also gives an insight regarding high cost of misclassifying D mod-

ules. In the domain of software defect prediction, mostly standard

machine learning algorithms are used which do not directly address

the issue of class imbalance [20]. The standard learning algorithms

are biased towards the dominant class and may not perform at their

best in imbalanced datasets [21]. The standard algorithms also have

the tendency to discard the scarce class by identifying it as noise [21].

Therefore, researchers perform over sampling in scarce class or under

sampling in dominant class before using the learning algorithm [21].

This is done to get a balanced distribution of classes such that stan-

dard algorithms designed for learning through balanced training set

can work in the same manner for both the classes.

The challenge of class imbalance is also faced in the domain of

direct marketing where profit needs to be maximized even when

significantly large number of customers are not likely to respond as

compared to number of customers who are likely to respond [22].

Similarly charity organizations need to contact potential donors from

a list of people who have pledged to donate and there is a small

proportion of pledges that is fulfilled [22]. In this domain the prob-

lem of imbalance has been addressed through association mining

(AM). Association Rule Mining (ARM) is an important data mining

technique and is employed for discovering interesting relationships

between variables in large databases [26]. ARM is used to find inter-

esting correlations, frequent patterns, associations or causal structures

among items of large datasets [27]. Fuzzy logic has also been applied

in other domains to address the issue of class imbalance [23].

Due to the factor of limited information content the defect predic-

tion models have reached a performance ceiling which can be crossed

if information content is improved. This information content can be

improved by collecting more insightful data or accessing and com-

bining relevant features available at the time of model development

[13]. In the case of most of the public datasets where the additional

data required to improve the information is not available, use of data

in an insightful and different way can be useful to improve quality of

defect prediction.

This paper uses the available information in the public datasets

in an effective manner, applies association mining (AM) to find as-

sociation between software metrics and software defects, and im-

proves performance of classification model in imbalanced datasets.

The datasets are preprocessed using the proposed approach, a defect

prediction model is developed using the preprocessed data and per-

formance analysis of the model is performed in terms of Recall. The

preprocessing step partitions data and finds important itemsets. The

important itemsets are relabeled in one partition of the data and the

prediction of D modules improves as a result. Afterwards, the prepro-

cessed datasets are used for model development and performance

of the model is also analyzed. Naive Bayes (NB) classifier (one of the

best techniques along with Random Forests in the field of defect pre-

diction [14,17]) has been used as a test case to evaluate the proposed

preprocessing. Significance of Recall for performance analysis is high-

lighted through a questionnaire distributed in the software industry.

The results show that the proposed approach has improved Recall of

the NB classifier up to 40%. Stability of the approach has been tested

by experimenting with different number of bins.

When lack of detailed information content is reported in litera-

ture, it becomes a non-trivial task to use the available information

in an effective manner. Preprocessing suggested in this paper is one

such attempt that gives a method to use the available data in a new

and insightful way. Average Recall reported for the datasets used has

been below 75% [15,21,28] whereas Recall values with the proposed

approach vary from 78.6% to 85% with different number of bins. It

is pertinent to mention that unlike other studies [29], no additional

information has been used with the publicly available static code

attributes.

Rest of the paper is organized as follows: Section 2 discusses the

related work, Section 3 presents our research methodology and our

approach to find focused itemsets. Section 4 presents the results of

the experiments whereas Section 5 discusses the results. Section 6

concludes the paper and presents future directions.

2. Related work

Numerous techniques for defect prediction have been reported

in literature and comparative studies to evaluate their performance

have also been conducted [9,10,13–17,29]. These techniques include

models like neural networks, decision trees, Naive Bayes, case based

reasoning, fuzzy inference systems, regression trees, association rule

mining based models as well as ensemble models like RIPPER,

WHICH, DTNB, and FURIA. Most of these techniques are based on

data mining methods and dominantly use public datasets available at

PROMISE repository [12]. The datasets used contain product metrics

as attributes of software modules along with defectiveness informa-

tion of the software modules. Software attributes, specifically code

attributes, have been ascertained to be significant in making defect

predictions [15]. Performance achieved using number of data min-

ing techniques suffer from ceiling effect [17] meaning that the pro-

posal of new defect prediction models is not significantly improving

quality of defect prediction. Menzies et al. [13,17] suggest that instead

of proposing new techniques for defect prediction, focus of research

should be on how to use the available data to improve performance

of prediction.

Though use of the public datasets and product metrics has been

frequent, they have been criticized for the reasons including lack of

ability to find causal relationship between software metrics and de-

fect [11] and quality issues related to available datasets [30]. Propo-

nents of using these data have developed numerous models based on

these data.

Wang et al. [31] have used feature subset selection algorithms to

select the attributes to be used by classifiers including Logistic re-

gression, K-nearest neighbor clustering and Multi-layer perceptron.

The study has empirically evaluated the minimum number of metrics

that can be used for defect prediction to be three. Various other mod-

els, for example Quad Tree-Based K-Means Algorithm [32] and An-

alytical Hierarchical Processing (AHP) based ensemble models have

been used for defect prediction [33]. WHICH framework [17] is capa-

ble of serving customized objectives and has been reported to out-

perform the data mining schemes employed for predicting defects in

software.

Association Rule Mining (ARM) has been useful to predict soft-

ware defect correction effort and determine association among

software defects [34–36]. An association rule based classifier, CBA2,

has been empirically evaluated to predict software defects [37].



Download English Version:

https://daneshyari.com/en/article/403469

Download Persian Version:

https://daneshyari.com/article/403469

Daneshyari.com

https://daneshyari.com/en/article/403469
https://daneshyari.com/article/403469
https://daneshyari.com

