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a b s t r a c t

To understand the neural mechanisms underlying humans’ exquisite ability at processing briefly flashed
visual scenes, we present a computer model that predicts human performance in a Rapid Serial Visual
Presentation (RSVP) task. The model processes streams of natural scene images presented at a rate of
20 Hz to human observers, and attempts to predict when subjects will correctly detect if one of the pre-
sented images contains an animal (target). We find that metrics of Bayesian surprise, which models both
spatial and temporal aspects of human attention, differ significantly between RSVP sequences on which
subjects will detect the target (easy) and those on which subjects miss the target (hard). Extending
beyond previous studies, we here assess the contribution of individual image features including color
opponencies and Gabor edges. We also investigate the effects of the spatial location of surprise in the
visual field, rather than only using a single aggregate measure. A physiologically plausible feed-forward
system, which optimally combines spatial and temporal surprise metrics for all features, predicts perfor-
mance in 79.5% of human trials correctly. This is significantly better than a baseline maximum likelihood
Bayesian model (71.7%). We can see that attention as measured by surprise, accounts for a large propor-
tion of observer performance in RSVP. The time course of surprise in different feature types (channels)
provides additional quantitative insight in rapid bottom-up processes of human visual attention and rec-
ognition, and illuminates the phenomenon of attentional blink and lag-1 sparing. Surprise also reveals
classical Type-B like masking effects intrinsic in natural image RSVP sequences. We summarize these
with the discussion of a multistage model of visual attention.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

What are the mechanisms underlying human target detection in
RSVP (Rapid Serial Visual Presentation) streams of images, and can
they be modeled in such a way as to allow prediction of subject per-
formance? This question is of particular interest since, when images
are presented at high speed, humans can detect some but not all
images of a particular type (target images; e.g. images containing
an animal) which they would be able to detect with far greater accu-
racy at a slower rate of presentation. Our answer to this question is
that two primary forces are at work related to attention and are part
of a two or more stage model (Chun & Potter, 1995; Reeves, 1982;
Sperling, Reeves, Blaser, Lu, & Weichselgartner, 2001). Here we will
suggest that the first stage is purely an attentional mask with the
blocking strength of attention given by image features which have
already been observed. The second stage on the other hand can block
the perception of the image if another image is already being pro-
cessed and is monopolizing its limited resources.

We consider here the metric of Bayesian surprise (Itti & Baldi,
2005, 2006) to predict how easily a target image containing an ani-
mal may be found among 19 frames of other natural images (dis-
tractors) presented at 20 Hz. In a first experiment, we show that
surprise measures are significantly different for target images
which subjects find easy to detect in the RSVP sequences vs. those
which are hard. We then present a second experiment which at-
tempts to predict subject performance by utilizing the surprising
features to determine the strength of attentional capture and
masking. This is done using a back-propagation neural network
whose inputs are the features of surprise and whose output is a
prediction about the difficulty of a given RSVP sequence.

1.1. Overview of attention and target detection

It has long been argued that attention plays a crucial role in
short term visual detection and recall (Duncan, 1984; Hoffman,
Nelson, & Houck, 1983; Mack & Rock, 1998; Neisser & Becklen,
1975; Sperling et al., 2001; Tanaka & Sagi, 2000; VanRullen & Koch,
2003a; Wolfe, Horowitz, & Michod, 2007). This also applies to
detection of targets when images are displayed, one after another,
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in a serial fashion (Duncan, Ward, & Shapiro, 1994; Raymond,
Shapiro, & Arnell, 1992). Many studies have demonstrated that a
distracting target image presented before another target image
blocks its detection in a phenomenon known as the attentional
blink (Einhäuser, Koch, & Makeig, 2007a; Einhäuser, Mundhenk,
Baldi, Koch, & Itti, 2007b; Evans & Treisman, 2005; Maki & Mebane,
2006; Marois, Yi, & Chun, 2004; Raymond et al., 1992; Sergent,
Baillet, & Dehaene, 2005). Thus, one image presented to the visual
stream can interfere with another image that quickly follows,
essentially acting as a forward mask (e.g. target in frame A blocks
target in frame B).

Additionally, with attentional blink, interference follows a time
course, whereby optimal degradation of detection and recall per-
formance for a second target image can occur when it follows
the first target image from 200–400 ms (Einhäuser et al., 2007a),
which is evidence of a second stage processing bottleneck. In most
settings, an intermediate distractor between the first and second
targets is needed to induce an attentional blink, a phenomenon
known as lag-1 sparing (Raymond et al., 1992). However, for some
types of stimuli, such as a strong contrast mask with varying fre-
quencies and naturalistic colors superimposed with white noise,
interference can occur very quickly (VanRullen & Koch, 2003b).
This may create a situation whereby for some types of stimuli, a
target is blocked by a prior target with a very recent onset
(<50 ms prior), or by contrast, a much earlier onset (>150 ms prior).
As such, there seems to be a short critical period with a U-shaped
performance curve where interference is reduced against the sec-
ond target. That is, interference is reduced if the preceding distrac-
tor comes in a critical period of approximately a 50–150 ms
window before the target, but is larger otherwise. This interval
we will generically refer to as the sparing interval.

In addition to interference with the second target, detection of
the first target itself can be blocked by backward masking (e.g. tar-
get in frame B blocks target in frame A) (Breitmeyer, 1984; Breit-
meyer & Öğmen, 2006; Hogben & Di Lollo, 1972; Raab, 1963;
Reeves, 1980; VanRullen & Koch, 2003b; Weisstein & Haber,
1965). However, in natural scene RSVP, backward masking occurs
at a very short time interval, <50 ms without a good ability to dwell
in time (Potter, Staub & O’Conner, 2002) That is, interference is not
U-shaped in the same way as with forward masking. As we will
mention later, longer intervals (>150 ms) may conversely enhance
detection of the first target (e.g. target in frame B enhances target
in frame A). However, backwards masking in the case of RSVP still
retains a U like shape as the effects of the mask peak and decrease.
The difference is that it does not have a second almost discrete epi-
sode of new masking following a short interval of sparing as for-
ward masking does. That is, once the backwards mask fades in
effect the first time, it is finished masking. The forward mask on
the other hand has the ability mask twice.

Putting these pieces together, there is a lack of literature showing a
strong reverse attentional blink which would be produced by a second
interval of backwards masking. With different stimuli, both forward
and backward masking can be observed over very short time periods
by flanking images in a sequence. However, only forward masking
interferes with targets observed several frames apart, following a
sparing lag with a much higher target onset latency. It should be noted
that these masking effects are not universally observed in all experi-
ments. As such, the mechanisms responsible for masking are depen-
dant to some degree on both masking and target stimuli, which may
result in a target being spared or completely blocked.

Much like masking from temporal offsets, if the first target is
displayed spatially offset from the second target, interference is de-
creased for recall of the first target (Shih, 2000). As an example, a
large spatial offset would occur if a target in frame A is in the upper
right hand corner while a target in frame B is in the lower left hand
corner. Thus, if we overlapped the frames, the targets themselves

would not overlap. As a result, recognition of individual target
images allows for some parallel spatial attention (Li, VanRullen,
Koch, & Perona, 2002; McMains & Somers, 2004; Rousselet, Fab-
re-Thorpe, & Thorpe, 2002). This is also seen if priming signals
for target and distractor are spatially offset (Mounts & Gavett,
2004). However, at intervals over 100 ms, spatial overlap may
actually prime targets in an attentional blink task (Visser, Zuvic,
Bischof, & Di Lollo, 1999). We then should gather that objects offset
in space lack some power to mask each other, but in contrast, may
at longer time intervals lack the ability to prime each other. Addi-
tionally it has been found that more than one object at different
temporal offsets can be present in memory pre-attentively, at the
same time, but only if they do not overlap at critical temporal, spa-
tial and even feature offsets (VanRullen, Reddy, & Koch, 2004).
However, there is reduced performance as more items, such as nat-
ural images, are added in parallel (Rousselet, Thorpe, & Fabre-
Thorpe, 2004). Thus, even if objects do not interfere along critical
dimensions, performance may degrade as a function of the number
of complex distractors added.

1.2. Surprise and attention capture

Prediction of which flanking images or objects will interfere
with detection of a target might be accounted for in a Bayesian
metric of statistical surprise. Such a metric can be derived for
attention based on measuring how a new data sample may affect
prior beliefs of an observer. Here, surprise (Itti & Baldi, 2005,
2006), is based on the conjugate prior information about observa-
tions combined with a belief about the reliability of each observa-
tion (For mathematical details, see Appendix A). Surprise is strong
when a new observation causes a Bayesian learner to substantially
adjust its beliefs about the world. This is encountered when the
distribution of posterior beliefs highly differs from the prior. The
present paper extends our previous work (Einhäuser et al.,
2007b), by optimally combining surprise measures from different
low-level features. The contribution of different low-level features
to ‘‘surprise masking”, and thus their role in attention, can be indi-
vidually assessed. Additionally, we will demonstrate how we have
extended on this work by creating a non-relative metric that can
compare difficulty for RSVP sequences with disjoint sets of target
and distractor images. That is, our original work was only able to
tell us if a new ordered sequence was relatively more difficult than
its original ordering. The current work will focus on giving us a
parametric and absolute measure based on how many observers
should be able to spot a target image in a given sequence set.

While surprise has been shown to affect RSVP performance, it
remains to be seen how surprise from different types of image fea-
tures interacts with recall. Importantly, critical peaks of surprise,
along specific feature dimensions, can be measured and used to as-
sess the degree to which flanking images may block one another.
For instance, should an image with surprising horizontal lines have
more power in masking a target than an image with surprising ver-
tical lines? This is important since some features may be more or
less informative, for instance if they have a low signal to noise ratio
(SNR) between the target and distractors (Navalpakkam & Itti,
2006). Additionally, some features may be primed in human
observers, making them more powerful. As an example, if features
can align and enhance along temporal dimensions (Lee & Blake,
2001, Mundhenk, Landauer, Bellman, Arbib, & Itti, 2004; Mund-
henk, Everist, Landauer, Itti, & Bellman, 2005) in much the same
way they do spatially (Li, 1998; Li & Gilbert, 2002; Mundhenk &
Itti, 2005; Yen & Fenkel, 1998), then some features that appear
dominant may have a fortunate higher incidence of temporal
and/or spatial colinearity in image sequences.

In order to predict and eventually augment detection of target
images, a metric is needed that measures the degree of interference
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