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a b s t r a c t

As an example of one-class classification methods, support vector data description (SVDD) offers an oppor-

tunity to improve the performance of outlier detection and reduce the loss caused by outlier occurrence in

many real-world applications. However, due to limited outliers, the SVDD model is built only by using the

normal data. In this situation, SVDD may easily lead to over fitting when the normal data contain noise or

uncertainty. This paper presents two types of new SVDD methods, named R-SVDD and εNR-SVDD, which

are constructed by introducing cutoff distance-based local density of each data sample and the ε-insensitive

loss function with negative samples. We have demonstrated that the proposed methods can improve the

robustness of SVDD for data with noise or uncertainty by extensive experiments on ten UCI datasets. The

experimental results have shown that the proposed εNR-SVDD is superior to other existing outlier detec-

tion methods in terms of the detection rate and the false alarm rate. Meanwhile, the proposed R-SVDD can

also achieve a better outlier detection performance with only normal data. Finally, the proposed methods are

successfully used to detect the image-based conveyor belt fault.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Detecting outliers from the available data has been an important

task in many diverse applications, such as fault detection, reliabil-

ity analysis, disease diagnosis, hazard prediction, etc. [1,2]. The goal

of outlier detection is to find the abnormal data with inconsistent

characteristics that are generated by a different mechanism. In prac-

tice, the abnormal data are expensive to obtain or even not available

at all, for instance, possible defect features in the fault detection or

non-healthy data in the medical diagnosis; however, we can usu-

ally acquire a large number of normal ones. Consequently, one-class

classification (OCC) has attracted much attention in such situations

[3–5], which allows for describing the situation of positive (normal)

data and identifies the negative data as outliers.

Support vector data description (SVDD) is one of widely used OCC

methods [6,7]. It is capable to build a flexible description bound-

ary in the high-dimensional feature space by kernel trick [8,9]. The

constructed boundary tends to enclose most of normal data in the

hyper-sphere and simultaneously minimize the chance of accepting

outliers. The outliers can be distinguished from normal data in the

following way: the data within the hyper-sphere are considered as
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normal, while the data outside the hyper-sphere are outliers. Another

advantage to use SVDD is the detection strategy without need of any

prior knowledge about the detected object [10,11].

Depending on the kernel-based distance between the hyper-

sphere and the training data, SVDD may easily lead to over fit-

ting when the training data contain noise or uncertainty [12]. The

noise data may behave like normal, and be enclosed inside the

hyper-sphere in the training processes [13]. In this case, the spher-

ical boundary may not be optimal and the detection performance

will become deteriorated, especially for some applied sensor data

with sampling errors and transmission noise. Thus, it is necessary

to develop a robust SVDD method to deal with noise or uncertain

data [14].

Earlier studies concentrated on adopting some distribution char-

acteristics of the target data in the training phase of SVDD [15]. Lee et

al. [16] proposed the density-induced SVDD by introducing new dis-

tance measurements based on the nearest neighborhood and Parzen-

window approaches, which reflected the relative density degree for

each data point. Furthermore, the kernel-based class center method

was used to generate the confidence level [17] and the position-based

weighting [18] respectively. Both parameters indicated the likelihood

of input data belonging to the normal. Besides, there were some other

methods to calculate the likelihood value, i.e. the k-nearest neigh-

bor (k-NN) method [19], the kernel k-means clustering and kernel

LOF-based method [20]. Though so much progress has been made
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to improve the detection performance of SVDD, most of the studies

equally reflect the distribution characteristics of all data. From our

observation on the training process of SVDD, taking the two dimen-

sional space for example, the data points located on the boundary of

the real space would usually be the support vectors (SVs) (i.e. bound-

ary points of the feature space), and they have a great impact on the

performance of data description. In addition, most of the above men-

tioned distribution characteristics were calculated by using kernel-

based distance, which would be directly affected by selected kernel

parameters [21].

On the other hand, most of contemporary SVDD algorithms are

used only with normal training data, which is similar to the unsuper-

vised learning. But the abnormal data do exist even though the num-

ber is small. The abnormal data could refine the description boundary

of SVDD if they are used in the training processes, such as SVDD with

negative examples (N-SVDD) [7]. However, the margin between the

normal data and the abnormal data is zero in N-SVDD, which would

result in poor generalization ability. To overcome this drawback, the

margin between the hyper-sphere and the abnormal (negative) data

was maximized to restructure the optimization problems in [23,24].

In [12], the rough SVDD including a lower hyper-sphere and an up-

per hyper-sphere was constructed by using the rough set principle.

Due to the class imbalance problem between two-class data, these

improved methods are subject to the hyper-sphere shift and the clas-

sification deviation.

In this paper, a robust SVDD is proposed with the introduction of

a cutoff distance-based local density for each data point [22], which

is used as the penalty weight of input data towards the noise data.

Moreover, the cutoff distance-based density can effectively indicate

the characteristics of those boundary data with noise. Furthermore,

we investigate the margin between normal data and abnormal data,

and find out that a ring-shaped band containing the inseparable data

would be formed around the margin. Inspired by the ε-SVR [25], we

construct another robust SVDD model with abnormal data by adding

two ε bands (i.e. ε-insensitive loss) on both sides of the description

boundary. The two developed models are named R-SVDD and εNR-

SVDD respectively. In order to assess their detection performance,

ten benchmark datasets from UCI are used for experiments. The

proposed methods are also applied to detect image-based conveyor

belt fault.

Compared with the previous work on the robustness improve-

ment of SVDD, the main contribution of our work can be indicated

as follows. First, the cutoff distance-based local density is introduced

that can mitigate the effect of noise towards SVDD, especially that of

the boundary noise. Second, the ε-insensitive loss is used to refine

the description boundary combing with the limited abnormal data,

which can improve generalization performance and avoid the hyper-

sphere shift. Finally, incorporating above two strategies to the SVDD

optimization framework, two robust SVDD models are built to detect

outliers.

This paper is organized as follows. In Section 2, we briefly in-

troduce the original SVDD and the cutoff distance-based local den-

sity. Section 3 presents our proposed methods and the theoretical

analyses related to the methods. Section 4 demonstrates the empir-

ical study about the robustness to noise, including UCI datasets and

image-based conveyor belt fault dataset. Finally, the conclusion and

further study are drawn in Section 5.

2. Fundamentals

2.1. Support vector data description

As a one-class classification method, the goal of support vector

data description (SVDD) is to find the minimum hyper-sphere that

can enclose most of normal (target) data in the feature space. Given

the target dataset X = {x1, x2, . . . , xl}, where xi ∈ Rn, the optimization

problem is constructed as Eq. (1).

min
R,a,ξ

R2 + C

l∑
i=1

ξi

s.t. ‖φ(xi) − a‖2 ≤ R2 + ξi,

ξi ≥ 0, i = 1, 2 . . . , l (1)

where R and a are the radius and center of the hyper-sphere respec-

tively in the feature space, ξ i is the error term to allow the data point

xi to locate outside the hyper-sphere, C>0 is the penalty parameter of

ξ i, and φ (.) is the mapping function that makes point xi mapped onto

a high-dimensional feature space. We can obtain Eq. (2) by solving

the Lagrange dual problem. The resolving process of the dual prob-

lem can be derived from [7] in details.

min
α

l∑
i=1

l∑
j=1

αiα j

(
φ(xi) · φ

(
x j

))
−

l∑
i=1

αi(φ(xi) · φ(xi))

s.t.

l∑
i=1

αi = 1,

0 ≤ αi ≤ C, i = 1, 2 . . . , l (2)

where αi > 0 is the Lagrange multiplier. Generally, K(xi, x j) =
(φ(xi) · φ(x j)) is defined as the kernel function. Because the

Gaussian radial basis function (RBF) can approximate most kernel

functions if the kernel parameter is chosen appropriately [26], the

Gaussian RBF kernel: K(xi, x j) = exp (−‖xi − x j‖2
/2σ 2) is adopted in

this paper. The data with αi > 0 constitute the support vectors (SVs).

And then we can obtain the following:

a =
l∑

i=1

αiφ(xi) (3)

R2 = 1

|SV s|
∑

xi∈SV s

‖φ(xi) − a‖2
(4)

To test an object x, the decision function f(x) is defined as Eq. (5).

f (x) = ‖φ(x) − a‖2 − R2 (5)

When f(x)≤0, x is classified as normal; otherwise, it is classified as an

outlier.

As shown in Fig. 1, 50 blue star-shaped points are generated ran-

domly with a banana shape in the two-dimensional space. The black

dot 51 represents the outlier. The green dashed line is the data de-

scription boundary of SVDD. Under normal condition, the outlier can

be detected by the description boundary as shown in Fig. 1(a). How-

ever, when the normal data are corrupted by noise, such as the tri-

angular point 52 and 53, the outlier is misclassified as normal data

shown in Fig. 1(b). Although decreasing the C value can reduce the

interference of boundary noise, the likelihood of each data point to

be an outlier is taken the same by using the same parameter C for

all points. It makes most normal boundary points excluded from the

data description region. Therefore, it is important to make full use of

the distribution characteristic of each point, especially the boundary

points. Herein, a robust modified strategy combining with the cutoff

distance-based local density has been proposed to mitigate the effect

of individual noise point towards SVDD.

2.2. The cutoff distance-based local density

The cutoff distance-based local density was proposed to make

cluster analysis in [22]. This quantity depends only on the distances

dij between data i and data j, which indicates the number of points

within the range of a cutoff distance. The local density ρ i of data point

i is defined as Eq. (6).

ρi =
∑

j

χ
(
di j − dc

)
(6)
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