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a b s t r a c t

This paper proposes a novel learning model that introduces the calculation of the pairwise gravitation of the

selected patterns into the classical fixed radius nearest neighbor method, in order to overcome the drawback

of the original nearest neighbor rule when dealing with imbalanced data. The traditional k nearest neigh-

bor rule is considered to lose power on imbalanced datasets because the final decision might be dominated

by the patterns from negative classes in spite of the distance measurements. Differently from the existing

modified nearest neighbor learning model, the proposed method named GFRNN has a simple structure and

thus becomes easy to work. Moreover, all parameters of GFRNN do not need initializing or coordinating dur-

ing the whole learning procedure. In practice, GFRNN first selects patterns as candidates out of the training

set under the fixed radius nearest neighbor rule, and then introduces the metric based on the modified law

of gravitation in the physical world to measure the distance between the query pattern and each candidate.

Finally, GFRNN makes the decision based on the sum of all the corresponding gravitational forces from the

candidates on the query pattern. The experimental comparison validates both the effectiveness and the effi-

ciency of GFRNN on forty imbalanced datasets, comparing to nine typical methods. As a conclusion, the con-

tribution of this paper is constructing a new simple nearest neighbor architecture to deal with imbalanced

classification effectively without any manually parameter coordination, and further expanding the family of

the nearest neighbor based rules.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Class distribution is defined as the proportion of patterns belong-

ing to different classes in a dataset and plays a pivotal role in pattern

recognition [11,12,38]. As a special case of class distribution, the im-

balanced dataset is the case that the number of patterns from one

class is far less than those belonging to the other classes [3,5,12,15].

Further in real-world classification tasks, the class with less patterns

generally attracts more interests than the others and then is defined

as the positive class [2,11,24]. Correspondingly, the other classes with

more patterns are defined as the negative classes. To be convenient,

this paper abbreviates the positive class (i.e., the minority class) to

POS and the negative classes (i.e., the majority classes) to NEG. Gen-

erally in binary-class imbalanced problems, one indicator named the

Imbalance Ratio (IR) [26] is defined in Eq. (1) to measure the imbal-

ance degree of one dataset:

IR = NNEG

NPOS

, (1)
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where NNEG and NPOS mean the number of patterns from NEG and

POS, respectively.

The previous research studies [2,3,11,15] have revealed that the

traditional classification methods deteriorate more or less when deal-

ing with the imbalanced datasets. The classical k Nearest Neighbor

search algorithm (kNN) has no exception [19,20,23,33]. kNN used to

be evaluated as one of the top 10 algorithms in data mining [37] be-

cause of its simple but powerful principle, which recognizes a query

pattern only based on the most frequent class distribution of its k

nearest neighbors in testing steps [8]. However, kNN might be misled

in imbalanced problems because that 1) the decision of kNN might be

dominated by the NEG patterns around the query pattern [23] and 2)

the selection of k is data-dependent and difficult to tune [33]. For in-

stance, a kNN with k = 7 is prone to classify a query pattern into NEG

in a binary-case, in spite of the fact that the two nearest neighbors

belong to POS and the other five farside patterns belong to NEG.

The existing solutions for imbalanced problems can be catego-

rized into three parts: firstly, the data-oriented methods use sam-

pling techniques to achieve the equilibrium of the class distribution,

such as the typical over-sampling method named SMOTE [7] that in-

creases the size of POS with the synthetic patterns. Secondly, the

cost-sensitive methods consider the penalties associated with mis-

classifying patterns [34]. Finally, the ensemble methods improve

the performance of each used classifier [11]. Nevertheless, research
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studies on kNN with imbalanced datasets are far from enough [20].

In general, the corresponding interests of kNN for imbalanced prob-

lem can be divided into two branches: the pattern-oriented meth-

ods aiming to amplify the effect of each POS pattern [20,39] and

the distribution-oriented methods trying to acquire more informative

prior knowledge of global distribution [10,19,23]. For the first branch,

one typical pattern-oriented method is the k Exemplar-based Nearest

Neighbor (ENN) [20] that first selects the pivot POS patterns and then

expands the boundary of them into Gaussian balls. In detail, ENN uses

a newly-defined distance between the query pattern and the surface

of the ball of one pivot POS pattern instead of the original distance be-

tween them, leading to a nearer connection between the query one

and the pivot one. Afterwards, the Positive-biased Nearest Neighbor

(PNN) [39] is proposed to boost ENN by dynamically comparing the

distance between the kth nearest local neighbor and the query to the

distance between the rth nearest POS pattern and the query. Accord-

ing to the rule of PNN, one of the two parameters k and r is finally

selected to balance the local distribution of the binary-class patterns.

That is, the search area of the query pattern is dependent on the value

of the two parameters. Differently from ENN, PNN has no training

steps [39]. As a result, PNN can deal with test patterns faster. Another

idea is to learn the relationship between the query and its neighbors

to correct the substantial bias to major class iteratively [13]. In detail,

the coordination of each iteration considers the infection from pat-

terns of both intra-classes and inter-classes as the weight and adopts

the Geometric Means metric (GM) as the measurement [13].

As for the second branch of kNN-related methods for imbalanced

problems, the typical distribution-oriented strategies are listed as fol-

lows. First, the Class Confidence Weighted kNN algorithm (CCW-kNN)

[23] obtains the different weights by calculating the mixture mod-

els or Bayesian networks and then imposes the weights on various

neighbors as the confidence. Besides, the Class Based Weighted k

Nearest Neighbor [10] generates weights for each pattern by calcu-

lating the rate of misclassification of each class by the original kNN.

In addition, the Class Conditional Nearest Neighbor Distribution (CC-

NND) [19] compares the query pattern to patterns of each class in

turn, and thus finds the most eligible class, in which the query pat-

tern defeats the most intra-class patterns in terms of the pointwise

comparison of distances to their k neighbors. Moreover, the Informa-

tive k Nearest Neighbor (IkNN) containing the localized version (LI-

kNN) and the globalized version (GI-kNN) introduces a new metric

that measures the informativeness between patterns first, and then

finds the top I nearest patterns as the final candidates from the basic k

nearest neighbors [33]. Finally, there are methods combining both of

the pattern and the distribution-oriented idea, e.g., the Fuzzy-Rough

k Nearest Neighbor Algorithm [14] constructs relation between the

query patterns and its neighbors based on the fuzzy membership

function, while some related approaches [21,22] are proposed based

on the fuzzy knowledge.

It can be concluded that most of the mentioned nearest neighbor

algorithms, to a certain extent, intend to learn and utilize global infor-

mation to make a progress, but there is still possibility for overcom-

ing the existing drawbacks and improving the previous work: firstly,

the learning models usually seem too complex and not easy to be ap-

proached without adopting special data structures; secondly, some

of the classifiers have to tune many parameters and the process for

finding optimal parameters costs extra time; thirdly, the influence

of the global information might be weakened during the training

process. In this paper, we intend to find a simpler but more robust

way to make a progress. Differently from the existing methods, we

first consider to separate rather than combine the processes to ac-

quire both global and local knowledge. In detail, we first try to elim-

inate ineligible patterns globally and then deal with the surviving

ones that are called as candidates in this paper. To fulfill the global

search task, we prefer to adopt the Fixed Radius Nearest Neighbor

search strategy (FRNN) [4,25] instead of the traditional kNN. Further

inspired and modified by the typical gravitation-based methods in-

cluding the Data Gravitation based Classification (GDC) [27,28] strat-

egy and the Gravitational Search Algorithm (GSA) [29,30], we aim to

design and introduce a new local decision criterion based on the grav-

itational rule into the FRNN. Furthermore, all steps are not expected

to require any parameter input manually. To our best knowledge, it

is the first time to propose the gravitation-inspired FRNN without

any manually-coordinated parameters. To be convenient, the novel

method is called GFRNN in short.

The major contribution of this paper lies in the following aspects:

• Motivation: This paper tries to propose a new easy-to-approach

nearest neighbor learning model by introducing the calculation of

universal gravitation into the traditional FRNN, in order to over-

come the drawback of the original nearest neighbor rule on im-

balanced classification problems.
• Novelty: The proposed method is expected to eliminate unneces-

sary patterns through the FRNN strategy and makes the final deci-

sion according to the sum of the gravitational forces between the

query and the surviving patterns. Moreover, none of parameters

are manually set or coordinated in the whole learning procedure.
• Experiments: The experiments are designed to compare GFRNN to

some typical algorithms. Specially, nine classifiers including CC-

NND [19], ENN [20], LI-kNN [33], PNN [39], kNN [8], FRkNN [25],

C4.5 [6], Logistic Regression (LR) [16], and the Support Vector Ma-

chine (SVM) [35] are considered. Finally, the results demonstrate

the effectiveness and the efficiency of the proposed method.

The rest of this paper is organized as follows. Section 2 presents

the architecture of the proposed method and demonstrates relevant

analyses on it. Section 3 reports on all the experimental results. Fi-

nally, conclusions are given in Section 4.

2. Description of GFRNN

In this paper, we focus on the binary-class recognition for imbal-

anced datasets even though GFRNN can be generalized into the multi-

class problems. At first, we suppose that there is an binary-class im-

balanced dataset. The training set of the dataset is XAll that includes

the set of POS: XPOS = {(x1, ϕ1), (x2, ϕ1), . . . , (xnPOS
, ϕ1)}, and the

set of NEG: XNEG = {(xnPOS+1, ϕ2), (xnPOS+2, ϕ2), . . . , (xnPOS+nNEG
, ϕ2)},

where ϕi ∈ {1, −1} is the label, i = 1 for POS and i = 2 for NEG. nPOS

and nNEG are the number of training patterns belonging to POS and

NEG, respectively. Therefore, the number of the total training patterns

can be written as:

nALL = nPOS + nNEG. (2)

Moreover, we define the query pattern y and formulate the function

d( · ) in Eq. (3) to measure the distance between two patterns. To

be simple, we adopt Euclidean distance here though any appropriate

measurements could be used.

d(xp, xq) = ||xp − xq||2. (3)

In addition, the training pattern that survives from the FRNN is

named candidate in sequent parts. Finally, it can be summarized that

the formulation of GFRNN includes three main steps: first selecting

candidates around y through FRNN, then calculating the distance be-

tween y and each candidate based on the simplified law of gravitation,

and making the decision according to the sum of the gravitational

forces of all y-candidate pairs at last.

2.1. Candidates selection based on the Fixed Radius Nearest Neighbor

search (FRNN)

According to the literature [25], there are three most popular near-

est neighbor search methods: kNN, FRNN, and the combination of

kNN and FRNN (i.e., FRkNN). At first, kNN can be defined as [25]:

kNN(y, XAll, k) = A, (4)
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