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a b s t r a c t

Class imbalance problem occurs when the number of training instances belonging to different classes are
clearly different. In this scenario, many traditional classifiers often fail to provide excellent enough clas-
sification performance, i.e., the accuracy of the majority class is usually much higher than that of the
minority class. In this article, we consider to deal with class imbalance problem by utilizing support vec-
tor machine (SVM) classifier with an optimized decision threshold adjustment strategy (SVM-OTHR),
which answers a puzzled question: how far the classification hyperplane should be moved towards
the majority class? Specifically, the proposed strategy is self-adapting and can find the optimal moving
distance of the classification hyperplane according to the real distributions of training samples. Further-
more, we also extend the strategy to develop an ensemble version (EnSVM-OTHR) that can further
improve the classification performance. Two proposed algorithms are both compared with many state-
of-the-art classifiers on 30 skewed data sets acquired from Keel data set Repository by using two popular
class imbalance evaluation metrics: F-measure and G-mean. The statistical results of the experiments
indicate their superiority.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the past decade, the class imbalance problem has received
considerable attention in several fields, such as artificial intelli-
gence [1], machine learning [2] and data mining [3,4]. A data set
is said to be imbalanced when and only when the instances of
some classes are obviously much more than that in other classes.
The problem is important due to it widely emerges in many real-
world applications, including financial fraud detection [5], network
intrusion detection [6], spam filtering [7], video monitoring [8],
medical diagnosis [9], Bioinformatics [10], etc. Generally, in these
applications, we are more interested in the pattern represented
by the examples of the minority class. However, majority tradi-
tional classification algorithms pursuing the minimal training
errors would heavily damage the recognition accuracy of the
minority class, thus it is necessary to adopt some bias correction
techniques before/after constructing a classifier.

The bias correction techniques can be roughly divided into four
major categories as follows:

1. Resampling the original training set until all the classes are
approximately equally represented. Resampling includes over-
sampling [11–13], undersampling [14,15] and hybrid sampling
[16].

2. Cost-sensitive learning, which is also called instances weighting
method, assigns different weights for the training instances
belonging to different classes so that the misclassification of
the minority class can be highlighted [17–19].

3. Moving the decision boundary (decision threshold adjustment)
towards the majority class in order to remedy the bias caused
by skewed sample distributions [20,21]. Unlike the other cor-
rection techniques, decision threshold adjustment strategy runs
after modeling a classifier.

4. Ensemble learning that provides a framework to incorporate
resampling strategy, weighting strategy or decision threshold
adjustment strategy, usually produces better and more
balanced classification performance [22–29].

Among those correction techniques mentioned above, decision
threshold adjustment is regarded as a potential solution for dealing
with class imbalance in recent studies [20,21]. However, the exist-
ing decision threshold adjustment approaches generally give the
moving distance of classification boundary empirically, thus fail

http://dx.doi.org/10.1016/j.knosys.2014.12.007
0950-7051/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: School of Automation, Southeast University, No. 2
Sipailou, Nanjing 210096, China. Tel./fax: +86 25 83794974.

E-mail address: cysun@seu.edu.cn (C. Sun).

Knowledge-Based Systems 76 (2015) 67–78

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/ locate /knosys

http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2014.12.007&domain=pdf
http://dx.doi.org/10.1016/j.knosys.2014.12.007
mailto:cysun@seu.edu.cn
http://dx.doi.org/10.1016/j.knosys.2014.12.007
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys


to answer a significant question: how far the classification hyper-
plane should be moved towards the majority class? This study
solves this puzzle in the context of support vector machine
(SVM) [30]. SVM is a robust classifier and is relatively insensitive
to class imbalance in comparison with many other classification
algorithms, because its classification hyperplane only associates
with a few support vectors [31].

In this paper, we first investigate the reason that the classifica-
tion performance of SVM can be destroyed by skewed classification
data in theory, and then we analyze the merits and drawbacks of
some existing SVM-based bias correction techniques. Next, the
computational formula of the moving distance in SVM-THR algo-
rithm proposed by Lin and Chen [21] is intensively modified to lead
to one optimized version (SVM-OTHR). Furthermore, we incorpo-
rate SVM-OTHR into Bagging ensemble learning framework and
present a novel classification algorithm named EnSVM-OTHR. In
particular, to avoid overfitting and to guarantee the diversity of dif-
ferent individuals, a small random perturbation term is inserted
into each SVM-OTHR to disturb the final position of classification
hyperplane. Finally, we compare the two proposed classification
algorithms with many state-of-the-art imbalanced classifiers on
30 data sets acquired from Keel data set Repository via non-
parametrical statistical testing [32,33], indicating their superiority.

The rest of this paper is organized as follows. In Section 2,
we introduce SVM theory and explain the reason that the per-
formance of SVM can be damaged by imbalanced classification
data. Section 3 briefly reviews some existing SVM-based class
imbalance correction techniques and indicates their pros and
cons. In Section 4, one optimized SVM decision threshold
adjustment strategy (SVM-OTHR) and its extended version
based on ensemble learning (EnSVM-OTHR) are described in
detail. Experimental results and discussions are presented in
Section 5. Finally in Section 6, the main contributions of this
study are summarized.

2. Why SVM can be damaged by class imbalance ?

Support vector machine (SVM), which comes out of the theory
of structure risk minimization, has several merits as follows: high
generalization capability, absence of local minima and adaptation
for high-dimension and small sample data [31,34].

Given some training data D, a set of m points of the form:
D ¼ fðxi; yiÞjxi 2 Rp; yi 2 f�1;1gm

i¼1g, where yi is either 1 or �1,
indicating the class to which the point xi belongs. Each xi is
one p-dimensional real vector. SVM is used to find the maxi-
mum margin hyperplane that divides the points having yi ¼ 1
from those having yi ¼ �1. The decision function of SVM is
described as:

hðxÞ ¼ hw;/ðxÞi þ b ð1Þ

where /ðxÞ represents a mapping of sample x from the input
space to high-dimensional feature space, h�; �i denotes the dot
product in the feature space, w denotes the weight vector for
learned decision hyperplane and b is the model bias. We can
optimize the values of w and b by solving the following optimi-
zation problem:

minimize : gðw; nÞ ¼ 1
2
kwk2 þ C

Xm

i¼1

ni

subject to : yiðhw;/ðxiÞi þ bÞP 1� ni; ni P 0

ð2Þ

where ni is the ith slack variable and C is regularization parameter
(penalty factor) which is used to regulate the relationship between
training accuracy and generalization. Then the minimization
problem in formula (2) can be transformed to a dual form and be
rewritten as:

maximize : WðaÞ ¼
Xm

i¼1

ai �
1
2

Xm

i¼1

Xm

j¼1

yiyjaiajKðxi; xjÞ

subject to :
Xm

i¼1

yiai ¼ 0; 8i : 0 6 ai 6 C

ð3Þ

where ai is the sample xi’s lagrange multiplier, Kð�; �Þ is a kernel
function that maps the input vectors into a suitable feature space:

Kðxi; xjÞ ¼ h/ðxiÞ;/ðxjÞi ð4Þ

Some previous work has found that radial basis kernel func-
tion (RBF) generally provides better classification accuracy than
many other kernel functions [31,34]. RBF kernel is presented as
follows:

Kðxi; xjÞ ¼ exp �kxi � xjk2

2r2

( )
ð5Þ

where r is the width of RBF kernel.
Although previous work found that SVM is more robust to class

imbalance than many other machine learning methods as its clas-
sification hyperplane only associates with a few support vectors, it
can be still hurt by skewed class distributions to some extent. We
try to analyze its reason in theory.

After training an SVM classifier, lagrange multiplier ai can be
divided into three categories as follows:

Case 1: ai ¼ 0, it means the instance xi is classified accurately.
Case 2: 0 < ai < C, the corresponding instance xi is called a nor-
mal support vector which is exactly on one of the margin
hyperplanes.
Case 3: ai ¼ C, xi is called a boundary support vector that lies
between margins. The percentage of boundary support vectors
reflects the error rate of SVM to some extent.

Suppose Nþ and N� represent the number of instances belong-
ing to the positive class (minority class) and the negative class
(majority class), respectively. Nþsv and N�sv are the number of sup-
port vectors (including normal and boundary support vectors) in
two classes, while Nþboundary and N�boundary represent the number of
boundary support vectors in two classes, respectively. According
to formula (3), we can get:

Xm

i¼1

ai ¼
X

yi¼þ1

ai þ
X

yi¼�1

ai ð6Þ

X
yi¼þ1

ai ¼
X

yi¼�1

ai ð7Þ

Because ai’s value is C at most, it can deduce two inequalities as
follows:X
yi¼þ1

ai P Nþboundary � C ð8Þ

X
yi¼þ1

ai 6 Nþsv � C ð9Þ

By integrating formula (8) and (9), we get:

Nþsv � C P
X

yi¼þ1

ai P Nþboundary � C ð10Þ

Similarly, it is not difficult to get the following inequality:

N�sv � C P
X

yi¼�1

ai P N�boundary � C ð11Þ

Suppose
P

yi¼þ1ai ¼
P

yi¼�1ai ¼ M, if formula (10) and (11)
respectively divide by Nþ � C and N� � C, we get:
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