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a b s t r a c t

The insufficiency of labeled samples is major problem in automatic image annotation. However, unla-
beled samples are readily available and abundant. Hence, semi-supervised learning methods, which uti-
lize partly labeled samples and a large amount of unlabeled samples, have attracted increased attention
in the field of image annotation. During the past decade, graph-based semi-supervised learning has been
becoming one of the most important research areas in semi-supervised learning. In this paper, we pro-
pose a novel and effective graph based semi-supervised learning method for image annotation. The
new method is derived by a compact graph that can well grasp the manifold structure. In addition, we
theoretically prove that the proposed semi-supervised learning method can be analyzed under a regular-
ized framework. It can also be easily extended to deal with out-of-sample data. Simulation results show
that the proposed method can achieve better performance compared with other state-of-the-art graph
based semi-supervised learning methods.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

In the real world, there are ever-increasing vision image data
generated from Internet surfing and daily social communication.
These metadata can be labeled or unlabeled, and accordingly be
utilized for image retrieval, summarization, and indexing. In order
to handle these datasets for realizing the above tasks, automatic
annotation is an elementary step, which can be formulated as a
pattern classification problem and accomplished by learning-based
techniques. Traditionally, the learning-based methods can be cate-
gorized into two categories: (1) supervised learning, which aims to
predict the labels of new-coming data samples from the observed
labeled set, i.e., to handle the classification problem or to preserve
the discriminative information which is embedded in the training
set. Typical supervised learning methods include Support Vector
Machines (SVM) [36,37], and Linear Discriminant Analysis (LDA)
and its variants [1–3,17,18]; and (2) the other one is unsupervised
learning, the goal of which is to handle the observed data with no
labels and to grasp the intrinsic structure of the dataset. Typical
unsupervised learning methods include clustering [19–22] and

manifold learning methods, such as ISOMAP [23], Locally Linear
Embedding (LLE) [24], and Laplacian Eigenmap (LE) [25]. In this
paper, we mainly focus on the classification problem, which is tra-
ditionally a supervised learning task.

In order to handle the pattern classification problem, such as
image annotation, the conventional supervised learning methods,
such as Linear Discriminant Analysis (LDA) [1–3] and Support Vec-
tor Machine (SVM) [36,37], cannot deliver satisfactory classifica-
tion accuracy when the number of labeled samples is not
sufficient. However, labeling a large number of samples is time-
consuming and costly. On the other hand, unlabeled samples are
abundant and can be easily obtained in the real world. Hence,
semi-supervised learning methods (SSL), which incorporate partly
labeled samples and a large amount of unlabeled samples into
learning, have become more effective than only relying on super-
vised learning. Recently, based on clustering and manifold assump-
tions, i.e., nearby samples (or samples of the same cluster or data
manifold) are likely to share the same label [4–6], graph based
semi-supervised learning methods have received considerable
research interest in the area of semi-supervised learning. Typical
methods include Manifold Regularization (MR) [15], Semi-super-
vised Discriminant Analysis (SDA) [16], Gaussian Fields and Har-
monic Functions (GFHF) [4], Learning with Local and Global
Consistency (LLGC) [5], and General Graph based Semi-supervised
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Learning method (GGSSL) [7,8]. All of these methods represent
both labeled and unlabeled sets by a graph, and then utilize its
graph Laplacian matrix to characterize the manifold structure
[25,26].

In general, the abovementioned graph based semi-supervised
learning can be divided into two categories: inductive learning
methods and transductive learning methods. The inductive learn-
ing methods, such as MR [15] and SDA [16], try to induce a decision
function that has a low classification error rate on the whole data
space; while the transductive learning methods, also known as
Label Propagation, aim to directly predict the label information
from the labeled set to the unlabeled set along the graph, which
is much easier to handle and less complicated than inductive learn-
ing methods. Two well-known transductive learning methods are
GFHF [4] and LLGC [5]. GFHF has an elegant probabilistic explana-
tion, and the output labels are the probabilistic values; however, it
cannot detect outliers in data. In contrast, LLGC can detect outliers;
however, its output labels are not probabilistic values. Both the
problems in GFHF and LLGC have been eliminated by GGSSL
[7,8], in which it can either detect the outliers or develop a mech-
anism to calculate the probabilities of data samples.

It should be noted that one important step of graph based SSL is
to construct a graph with weights for characterizing the data struc-
ture. The graph is usually used to find the neighbors by k-neighbor-
hood or e-neighborhood in the whole data [23–26], and then to
define the weight matrix on the graph. There are commonly two
ways to define the weight matrix: one is to apply the Gaussian
function [4,5,7,8,15,16] and the other is to employ the local linear
reconstruction strategy [13,14]. The Gaussian function is easily
manipulated in many graph based SSL, but estimating the optimal
variance in the Gaussian function is very difficult [13]. The locally
linear reconstruction strategy has no such problem, as it is based
on the assumption that each sample can be reconstructed by a lin-
ear combination of its neighborhoods. The weight matrix is then
automatically calculated when the neighborhood size is fixed.
However, as pointed out in [10], using the neighborhoods of a sam-
ple to reconstruct it may not achieve the minimum result, which
may not well capture the manifold structure of the dataset.

In this paper, motivated by the framework of GGSSL [7,8], we
present an effective semi-supervised learning method, namely,
Compact Graph based Semi-supervised Learning (CGSSL), for
image annotation, which is based on a newly proposed compact
graph. The newly proposed graph finds the neighbors of each sam-
ple and calculates the graph weights in a way as [13,14]. However,
since the minimum reconstruction error of a sample may not be
obtained by its own neighborhood, it aims to reconstruct the sam-
ple by using the neighbors of its adjacent samples and then pre-
serve the graph weights corresponding to the minimum error. In
this way, a more compact graph can be constructed, which can
well capture the manifold structure of the dataset. In addition, in
order to establish the connection to the normalized graph, we fur-
ther symmetrize and normalize this compact graph. With these
processes, the proposed CGSSL can be theoretically analyzed from
the perspective of a graph, through which we show that the pro-
posed CGSSL can be derived from a smoothness regularized frame-
work. The proposed CGSSL can also be easily extended to its
inductive out-of-sample version for handling new-coming data
by using the same smoothness criterion. Finally, extensive simula-
tions on image annotation and content based image retrieval show
the effectiveness of the proposed CGSSL.

The main contributions of this paper are as follows: (1) we pro-
pose a new compact local reconstruction graph with symmetriza-
tion and normalization for semi-supervised learning. The new
graph construction strategy can find a more compact way to
approximate a sample with its neighborhoods, which can better
grasp the manifold structure embedded in the dataset. In addition,

with symmetrization and normalization processes, the proposed
CGSSL can be analyzed theoretically under a regularized frame-
work; (2) the proposed CGSSL is a transductive learning method,
and it can also be easily extended to its inductive out-of-sample
version for handling new-coming data by using the same
smoothness criterion; (3) we analyze the relationships between
the proposed CGSSL and other state-of-the-art graph based
semi-supervised learning in terms of objectives, parameters and
out-of-sample extensions, which are helpful for better understanding
graph-based semi-supervised learning methods. Moreover,
extensive simulations based on image annotation and content
based image retrieval have verified the effectiveness of the
proposed method; and (4) we further analyze the proposed CGSSL
and other state-of-the-art methods from the time-to-process point
of view and give an explicit implementation choice. Simulation
results regarding computational time show that the proposed
CGSSL can be more suitable and practical for handling large-scale
image annotation tasks.

The rest of this paper is organized as follows: In Section 2, we
will provide some notations and present the proposed CGSSL; in
Section 3, we will give detailed analysis and out-of-sample exten-
sions for the proposed CGSSL; extensive simulations are conducted
in Section 4, and final conclusions are drawn in Section 5.

2. The proposed semi-supervised learning method

Let X ¼ ½Xl;Xu� 2 Rd�ðlþuÞ be the data matrix, where d is the num-
ber of data features, and the first l and the remaining u samples in X
represent the labeled set Xl and unlabeled set Xu, respectively. Each
sample in Xl is associated with a class label ci; i 2 ½1;2; . . . ; c�, where
c is the number of classes. The goal of graph based semi-supervised
learning methods is to propagate the label information of the
labeled set to the unlabeled set according to the distribution asso-
ciated with both the labeled and unlabeled set [4,5], and through
which the predicted labels of the unlabeled set, called soft labels,
can be obtained.

2.1. Review of graph construction

In label propagation, a similarity matrix must be defined for
evaluating the similarities between any two samples. The similar-
ity matrix can be approximated by a neighborhood graph associ-
ated with weights on the edges. Officially, let eG ¼ ðeV ; eEÞ denote
this graph, where eV is the vertex set of eG representing the training
samples, and eE is the edge set of eG associated with a weight matrix
W containing the local information between two nearby samples.
There are many ways to define the weight matrix. A typical way
is to use the Gaussian function [4,5,7,8,15,16]:

wij ¼ exp �kxi � xjk2
=2r2

� �
xi 2 NkðxjÞ or xj 2 NkðxiÞ; ð1Þ

where NkðxjÞ is the k neighborhood set of xj, and r is the Gaussian
function variance. However, r is hard to be determined, and even
a small variation of r can alter the results dramatically [13]. Wang
et al. have proposed another strategy to construct eG by using the
neighborhood information of samples [13,14]. This strategy
assumes that each sample can be reconstructed by a linear combi-
nation of its neighborhoods [24], i.e., xi �

P
j:xj2NkðxiÞwijxj. It then cal-

culates the weight matrix by solving a standard quadratic
programming (QP) problem as:

min xi �
X

j:xj2NkðxiÞ
wijxj

������
������

2

F

s:t: wij P 0;
X

j2NkðxiÞ
wij ¼ 1: ð2Þ

The above strategy is empirically better than the Gaussian function,
as the weight matrix can be automatically calculated in a closed
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