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a b s t r a c t

Evolutionary Algorithms (EAs) are well-known terms in many science fields. EAs usually interfere with
science problems when common mathematical methods are unable to provide a good solution or finding
the exact solution requires an unreasonable amount of time. Nowadays, many EA methods have been
proposed and developed. Most of them imitate natural behavior, such as swarm animal movement. In
this paper, inspired by the natural phenomenon of growth, a new metaheuristic algorithm is presented
that uses a mathematic concept called the fractal. Using the diffusion property which is seen regularly
in random fractals, the particles in the new algorithm explore the search space more efficiently. To verify
the performance of our approach, both the constrained and unconstrained standard benchmark functions
are employed. Some classic functions including unimodal and multimodal functions, as well as some
modern hard functions, are employed as unconstrained benchmark functions; On the other hand, some
well-known engineering design optimization problems commonly used in the literature are considered
as constrained benchmark functions. Numerical results and comparisons with other state of the art
stochastic algorithms are also provided. Considering both convergence and accuracy simultaneously,
experimental results prove that the proposed method performs significantly better than other previous
well-known metaheuristic algorithms in terms of avoiding getting stuck in local minimums, and finding
the global minimum.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

There are countless applications for optimization in our world.
Nowadays, many companies have faced problems in need of opti-
mization. Indeed, there are many challenging problems in industry
and science which are really necessary to tackle. They can be for-
mulated as optimization problems.

We need optimization to minimize time, cost, or risk, and max-
imize profit, quality or efficiency. Numerous complex real-life opti-
mization problems have emerged in many scientific fields such as
engineering, economics and business [1], that cannot be solved in a
reasonable amount of time and meanwhile yield a precise answer.
Indeed, such problems are often highly nonlinear. Moreover, many
of them include many different variables and act under complex
constraints. These constraints are either in the form of simple
bounds such as ranges of material properties, or in the form of non-
linear relationships such as maximum stress, maximum deflection,
minimum load capacity, or geometrical configuration [2]. On the
other hand, since the size of the search space increases dramati-
cally while solving high-dimensional optimization problems, clas-
sical optimization algorithms like exhaustive search do not provide

a suitable solution. Therefore, the main alternative for solving this
kind of problem is using approximate algorithms.

During the 1950s and 1960s, the concept of evolution was
investigated by computer scientists as an optimization tool for
solving engineering problems, and later on founded a technical
method called approximate algorithms. Approximate algorithms
can further be divided into two classes: specific heuristics and
metaheuristics. The term ‘‘heuristic’’ originally comes from Greek
and means ‘‘to discover’’ and ‘‘to guide an investigation’’ [3].
Heuristics are techniques which seek good (near optimal) solutions
at a reasonable computational cost without being able to guaran-
tee either feasibility or optimality, or even in many cases to state
how close to optimality a particular feasible solution is [4]. Specific
heuristics are designed for particular problems while metaheuris-
tics are applicable for a large variety of optimization problems,
and they also accommodate to solve any optimization problem.
The competence of metaheuristic algorithms can depend on the
fact that they imitate the best features in nature, especially the
selection of the fittest in biological systems which has evolved by
natural selection over millions of years [2].

Metaheuristics are often employed to solve hard problems
which need to explore a larger space. The advantage of metaheuris-
tic algorithms is related to exploring the space efficiently without
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being sensitive to the size of the search space. Typically, metaheu-
ristics are based on three main purposes: solving problems faster,
solving large problems and obtaining robust algorithms [1]. More-
over, ease of design and implementation along with flexibility
should be the other features of these algorithms. Two important
characteristics of metaheuristics are: intensification (or exploita-
tion) and diversification (or exploration). Searching around the
current best solutions, and selecting the best candidates or solu-
tions are of the intensification properties, while diversification
investigates the efficiency of the algorithm in exploring the search
space often using the randomization method.

The last two decades have seen enormous development in use
of metaheuristics in many science fields including artificial intelli-
gence, computational intelligence, soft computing, mathematical
programming, and operations research. Most metaheuristic algo-
rithms are inspired by natural phenomena behaviors. Among them,
Genetic Algorithm (GA) [5] established Darwin theory as one of the
popular algorithms that mimic the natural evolution process.
Particle Swarm Optimization (PSO) proposed by Eberhart and
Kennedy [6], was inspired by social behavior of flocks of birds
which are searching for their food. Developed by Karaboga, Artifi-
cial Bee Colony (ABC) simulates the foraging behavior of a bee
swarm [7]. Like ABC, Ant colony (AC) is another optimization
algorithm inspired by the foraging behavior of ant colonies [8].
‘‘Every particle in the universe attracts every other particles’’, this
is Newtonian gravity rule which Gravitational Search Algorithm
(GSA) is based on [9]. Cuckoo Search (CS) [2] is another successful
metaheuristic which mimics the cuckoo behavior reproduction
strategy. Over the last decades, uses of metaheuristic algorithms
have increased [10–17]. These algorithms are used to solve com-
plex computational optimization problems, however, fast conver-
gence along with accuracy is not guaranteed.

The aim of the presented work is to develop an optimization
algorithm that overcomes the above shortcomings. In this paper,
two novel metaheuristic algorithms based on fractal properties
are presented which satisfy both fast convergence and accuracy
in a few generations. The main contribution of this paper is the
presentation of a new algorithm with new insight into solving opti-
mization problems based on diffusion property turned up in frac-
tals. These algorithms are able to achieve a solution that has the
least (or at most, a small) error compared with the globally opti-
mum solution within a minimal number of iterations, thus offering
an improvement in terms of accuracy, convergence time and sim-
plicity of operations.

In the first algorithm, each particle in the system tries to simu-
late the branching property of a dielectric breakdown, thus making
it suitable as a search tool for solving global optimization prob-
lems. The second algorithm is the developed version of the first
algorithm which can cover all disadvantages of the first algorithm.
All procedures in the second algorithm can be divided into two
processes called Diffusing and Updating processes. In the first
process, to increase the chance of finding the global minimum,
similar to the first algorithm, each particle diffuses around its cur-
rent position. In the latter process, to explore the problem space
efficiently, the second algorithm uses some random methods as
updating processes. Since the second algorithm is more promising
than the first algorithm, further experiments have been done to
show the superiority of this algorithm. The main purpose of this
study is to introduce a new method for tackling a variety of optimi-
zation problems with a novel perspective setting a sight for future
researches. On the other hand, the algorithm is extended to solve
other problems such as constrained optimization problems.

Preliminary studies show that this algorithm is very promising
and could outperform existing algorithms such as PSO, CS, MCS,
BSA, CME-ES, DE, GSA, ABC and other well-known metaheuristic
algorithms.

The rest of paper is organized as follow: Section 2 summarizes
Fractals and fractal properties. Fractal Search and Stochastic Fractal
Search are described in Sections 3 and 4 respectively. Experimental
results are demonstrated in Section 5, and our conclusion is made
in Section 6.

2. Fractals

The property of an object or quantity which explains self-simi-
larity on all scales, in a somewhat technical sense, is called fractal.
The term of ‘‘fractal’’ comes from the Latin word frāctus which
means ‘‘broken’’ or ‘‘fractured’’, and it was first used by Benoı̂t
Mandelbrot in 1975. Mandelbrot also tried to use the concept of
fractal theories to describe geometric patterns in nature [18].

Developing research in this area, the example list of fractals
including structures from microscopic aggregates to the cluster
of galaxies has been become very long. Far-from-equilibrium
growth phenomena are an important field where fractals observe,
and are engaged to many fields of science and technology. Some
examples for such processes include dendritic solidification in an
undercooled medium, viscous fingering which is observed when
a viscous fluid is injected into a more viscous one, and electrode-
positing of ions onto an electrode [19].

Typically, to generate a fractal shape, some common methods
such as: Iterated function systems [20], Strange attractors [21], L-
systems [22], Finite subdivision rules [23] and Random fractals
[24] are used. Based on the fractal characteristics, our new meta-
heuristic method inspires random fractals grown by Diffusion
Limited Aggregation (DLA) method concept as a successful search
algorithm in both accuracy and time consumption.

2.1. Random fractals

Random fractals can be generated by modifying the iteration
process via stochastic rules such as Levy flight, Gaussian walks,
percolation clusters, self-avoiding walks, fractal landscapes, trajec-
tories of Brownian motion and the Brownian tree (i.e., dendritic
fractals generated by modeling diffusion-limited aggregation or
reaction-limited aggregation clusters) [19]. Some random fractals,
such as the clusters describing a bacterial colony, can be generated
by a physically motivated model called ‘‘Diffusion Limited Aggre-
gation’’ (DLA) [25]. For simplicity, consider the formation of such
a cluster on a plane, with the initial (seed) particle located at the
origin. Other particles are then generated randomly around the
original point, and cause diffusion. To simulate the diffusion
process, a mathematical algorithm like random walk has been
employed. The diffusing particle sticks to the seed particle which
is made from it. This process is repeated until a cluster has formed.
While forming the cluster, the probability of particle stuck to the
end has increased comparing to the ones that penetrate the inte-
rior. Therefore, this property leads a cluster to the branch-like
structure (Fig. 1).

2.2. Dielectric breakdown

Narrow discharge branchings which are frequently seen in
nature are called dielectric breakdown. Study on dielectric
breakdown properties shows that the branching tendency can be
modeled into complicated stochastic patterns. Examples are light-
ning, surface discharges (Lichtenberg figures), and treeing in poly-
mers. The global structure of branched discharges often shows a
close structural similarity within a large class of discharge types
but at the moment even a qualitative classification of these struc-
tures is missing. Niemeyer et al. [26] showed that branched dis-
charges follow fractal properties, and proposed a new stochastic
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