Knowledge-Based Systems 75 (2015) 41-51

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Schema matching based on position of attribute in query statement

Guohui Ding *, Tianhe Sun

Shenyang Aerospace University, China

@ CrossMark

ARTICLE INFO

ABSTRACT

Article history:

Received 21 April 2013

Received in revised form 11 June 2014
Accepted 9 November 2014

Available online 11 December 2014

Keywords:

Schema matching
Database integration
Query log

Ant Colony Optimization
Attribute position

Query statement

Attribute-level schema matching is a critical step in numerous database applications, such as DataSpaces,
Ontology Merging and Schema Integration. There exist many researches on this topic, however, they all
ignore evidences about the positions of attributes in query statements, which are crucial to find
high-quality matches between schema attributes. In this paper, we propose a novel matching technique
based on the positions of attributes appearing in the schema structure of query results. The positions of
attributes in query results embody the extent of the importance of an attribute for the user browsing the
query results. The core idea of our approach is to collect the statistics about attribute positions from
query logs to find correspondences between attributes (matches). Our method works in three phases.
The first phase is to design a matrix to record the statistics about attribute positions. Then, we employ
two scoring functions to measure the similarities between collected statistics of two schemas to be
matched. Finally, we employ a traditional algorithm to find the optimal mapping. Furthermore, our
approach can be combined with other existing matchers to obtain more accurate matching results. An

experimental study shows that our approach is effective and has good performance.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Schema matching is an essential building block in sharing
multiple heterogeneous data sources through a unified access
interface. The basic issue of schema matching is to find attribute
correspondences between attributes in source schemas and attri-
butes in target schemas, namely matches. Matches are very signifi-
cant for creating a unified mediated schema over multiple source
schemas, exchanging data from one schema to another schema
and sharing data in similar domains. Significant attention has been
paid to this topic in literatures, and a rich body of techniques have
been proposed by works [41,40,38,24,23,21,19,13,14,5,4].

The schemas to be matched are typically designed by different
developers which have different habits and experiences, so they
often have diverse structures and representations, and this makes
schema matching difficult. In addition, dozens of tables and thou-
sands of attributes in schemas also increase the difficulty of
schema matching. Even with some availability of domain expertise,
the task of schema matching may not be easy. As a result, schema
matching continues to be a challenge, and to be a valuable research
problem in practice.

There are a multitude of techniques in schema matching area,
also called matcher, e.g., [38,24,23,19,14]. However, there are yet

* Corresponding author.
E-mail addresses: dinguohui@sau.edu.cn (G. Ding), suntianhe2013@sina.com (T.
Sun).

http://dx.doi.org/10.1016/j.knosys.2014.11.005
0950-7051/© 2014 Elsevier B.V. All rights reserved.

no perfect matchers that can return 100% accurate matches, and
consequently, additional efforts are needed to be contributed to
this area. In this paper, we proposed a novel matching technique
that uses the positions of attributes appearing in the schema struc-
ture of query results to find the matches. As is well known, people
are used to reading words in books from the left side to the right
side, which is a habit that people capture information. For example,
given a spreadsheet listing some records of phones, people always
begin with the first column to read, then the second column, etc.
This kind of habit can present some advices for developers who
work on applications associated with the structured information
and are designing a schema structure. That is, the developers
should arrange the more important columns at the positions closer
to the left side of the schema structure. For example, the column
“phoneModel” in the above spreadsheet will be arranged in the
left-hand side of the column “phonePrice”; as such, the column
“departure time” is more likely to appear in the left side of the col-
umn “arriving time” in a railway timetable. Sometimes, a default
ordering rule of a industry is also contained in the schema struc-
ture. We browse four websites selling mobile phones and search
a phone of a specific brand, and the schema structures of their
returned results are shown in Fig. 1. We can see that the attributes
of schemas from different websites almost have the same order in
their respective query results. Obviously, developers for the
websites are more likely to arrange the attributes close to the left
side according to the reading habit above. However, the reading
habit is slightly useless for arranging the order of attributes close

http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2014.11.005&domain=pdf
http://dx.doi.org/10.1016/j.knosys.2014.11.005
mailto:dinguohui@sau.edu.cn
mailto:suntianhe2013@sina.com
http://dx.doi.org/10.1016/j.knosys.2014.11.005
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys

42 G. Ding, T. Sun/Knowledge-Based Systems 75 (2015) 41-51

to the right side, but they still have the similar order and the reason
is the default ordering rules in a specific industry. Thus, the habits
including reading habit and default rules, which are typically con-
formed by schemas to be matched in the similar domains, should
be used to find matches.

As the discussion above, we can see that different attributes
have different importance of structuring query results to be shown
to final users; that is, an attribute will hold its own position in the
schema structure of query results. As a result, we can regard the
statistics about the positions of an attribute in a large number of
query results as the identification of its semantics. Actually, a
query result derives from a corresponding query statement in
query logs. Consequently, our core idea is to collect the statistics
about positions of attributes from the query logs to find matches.
There are three phases in our approach. Firstly, we collect the
statistics about positions of attributes by scanning queries in query
logs of schemas to be matched, and the matrix, called feature
matrix, is used to record the statistics. Secondly, three kinds of
cardinality constraints for mappings are considered, which are
one-to-one mapping, onto mapping and partial mapping. Based
on the constraints, we employ two scoring functions to measure
the similarities of feature matrices of different schemas. Finally,
given the scoring functions, Ant Colony Optimization algorithm is
used to find the final optimal attribute mapping. Our approach
can be used as an auxiliary technique for current main matching
techniques, such as matching based on text, and matching based
on instances. If our approach is combined with other existing
matchers, the accuracy of matching results will be improved signif-
icantly. This paper makes the following contributions:

1. We discover that the positions of an attribute in schema struc-
tures of query results contain some semantic information that
can be used in schema matching.

2. We exploit the feature matrices to record the statistics about
positions of attributes, which are collected from query logs.

3. We consider two kinds of scoring functions to measure the
similarities of the feature matrices of different schemas.

4. We perform an extensive experimental study and the experi-
mental results show that the proposed algorithm has good
performance.

The rest of this paper is organized as follows. Section 2 intro-
duces how to extract features of attribute positions. Section 3 dis-
cusses the scoring functions and the searching algorithm. The
experimental results are given in Section 4. A brief related work
is reviewed in Section 5. Finally, we conclude in Section 6.

2. Features extraction of attribute position

The first phase of our work is introduced in this section. Given
two schemas to be matched, we will scan each query in logs to
collect the statistics about positions of attributes. Then, we design
two types of matrices to record the statistics about positions of
attributes.

As our motivation shows, the positions of an attribute in
schema structures can be seen as the identification of its semantics
in the same schema. Thus, the information of the positions can be
collected to perform schema matching. In what follows, we will
discuss how to collect the statistics about the positions. First, we
will consider the clause types in query logs. Only attributes in
“select” clauses will be outputted as schema structures of final
results. Thus, an easy way is to scan only the “select” clauses,
and ignore the “where”, “group” and “order” clauses. This method
is simple, but deficient. As the discussion in Section 1, different
attributes have different importance when showing information
to users. For example, when your friend introduces a person to
you, he or she first tells you the person’s name rather than his or
her height. Similarly, for a car you are not familiar with, what
you first want to know may be the brand or the name of the car
rather than its engine model. These attributes, like name and
brand, are actually the major attributes, which have more impor-
tant or general information of a given object, while other less
important attributes (like height and color) are the minor attri-
butes. Major attributes often receive more attention from people.
They are customarily placed in the front position by developers
as the main query conditions. For example, if a person is designing
a user query interface in a website selling mobile phones, the com-
box (graphical user interface widget) of the condition “brand” will
be placed above the combox of the condition “color”. When buyers
use this interface to find mobile phones, the “where” clause of the

query generated by servers is more likely to be *“...where
brand="‘... and color="..."” rather than “...where color="..’
and brand =“..."”; that is, “brand” will appear in front of “color”.

It can be seen that the positions of attributes in the “where” clause
also reflect the importance of attributes to some extent. This
behavior is consistent with our motivation in Section 1. The cases
for “order” and “group” clauses are similar. Thus, we consider four
types of clauses “select”, “where”, “order” and “group” for collect-
ing features in the query logs. Second, we need to consider the
types of queries except for the types of clauses. As in [14], three
types of queries are considered. The first is called SP] query that
is the single-block query with Select, Project, Join and optional
“group” and/or “order” clauses. The second is called SPJU query
that contains multiple SPJ queries connected by the set operator
“union”. The third is called SPJS query that is SP] queries with
nested subqueries (type: SPJ, SPJU or SPUS). Before scanning que-
ries, we introduce a concept appearance sequence. Given a query,
the appearance sequence is a sequence that consists of attributes
in the query. Meanwhile, the attributes in the sequence are sorted
according to the order that the attributes appear in the query. We
can see that each query corresponds to an appearance sequence
which embodies the reading habit of people or some default order-
ing rules of a industry mentioned in Section 1. Base on this concept,
we will discuss how to scan queries and collect the statistics.
Each query in the query log will be scanned. For the SP] queries,
we just extract an attribute sequence from a query. For the SPJU and
SPJS queries, we decompose the queries into separate subqueries
each of which is a SPJ query. The position of each attribute in an
appearance sequence is recorded in a feature matrix. Given a log,

A [brand [model | color | timeMarket | appearance | videoCall | system | smart
B [brand [model | color | timeMarket | appearance | system | smart | cpuModel
C [brand | model [color | appearance | videoCall | system | smart | cpuModel
D | brand [model [color | timeMarket | appearance | system | smart | cpuModel

Fig. 1. Schema structures of query results from four E-commerce websites A-D.

Download English Version:

https://daneshyari.com/en/article/403544

Download Persian Version:

https://daneshyari.com/article/403544

Daneshyari.com

https://daneshyari.com/en/article/403544
https://daneshyari.com/article/403544
https://daneshyari.com

