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a b s t r a c t

Robust modelling is significant to deal with complex systems with uncertainties. This paper aims to
develop a novel learning algorithm for training regularized local random weights networks (RWNs).
The learner model, terms as RL-RWN, is built on regularized moving least squares method and general-
izes the solution obtained from the standard least square technique. Simulations are carried out using
two benchmark datasets, including Auto-MPG data and surface reconstruction data. Results demonstrate
that our proposed RL-RWN outperforms the original RWN and radial basis function networks.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Feedforward Neural Networks (FNNs) are often used in data
regression and classification with applications in various domains.
In conventional learning techniques, all parameters (e.g., weights
and bias) of a neural network are required freely adjustable, that
is, they can be tuned properly and the appropriate values can be
found from some sample data. For example, the well-known error
back-propagation (BP) algorithm [1], adjusts the parameters of
FNNs with gradient descent method.

However, the speed of the BP algorithm is terribly slow and
often suffers from local minima that is related with the choice of
initial weights. If the hidden weights and biases are chosen ran-
domly, i.e., they are considered as random variables with the uni-
form distribution on ð0;1Þ, then the output weights of FNNs can be
determined by solving a least square problem with respect to the
output weights. The original idea of building neural networks with
random weights (RWNs) can be found in [2] and later on such a
random learner model was further investigated with a universal
approximation theorem [3,4].

It has been pointed out in [5,6] that FNNs have limited ability to
characterize local features, such as discontinuities in curvature,
jumps in value or other edges. Those local features, which are
located in time and/or frequency, typically embody important pro-
cess-critical information such as aberrant process modes or faults
[5]. Bottou has suggested an improved localized models in [7] to

deal with both data reduction (or compression) and subsequent
classification tasks, that rely on an accurate representation of local
features.

Zhang [8], Bakshi and Stephanopoulos [9], Hou and Han [10],
Zainuddin and Pauline [11] have developed Wavelet Neural Net-
works (WNNs), and tried to overcome this weakness of FNNs by
means of using the local representation property of wavelets. How-
ever, like FNNs and RWNs, the objective function for training
WNNs is the Mean Square Error (MSE), i.e., the sum of square error
between the observed values and the predicted values. In this way,
each training datum has equal weight in the square error, so they
cannot reflect the different influence of training data on testing
data. Even for the weighted FNNs [12], each training datum has dif-
ferent weight in the square error, the proportions are fixed in the
process of learning. That is, they do not change with the variation
of testing data. While in many real world applications such as sur-
face reconstruction and signal processing, the training data that are
closer to the testing data should have more influence than others.
That is, the weights (proportions) should be updated according to
the closeness of the testing data to teacher signals.

In this paper, we embody the local features of the models into
learning and utilization processes of the RWN, called regularized
local random weights networks (RL-RWNs). The proposed learning
algorithm can reflect the different influence of training data on
each testing data that can be understood as follows: For each test-
ing sample, firstly, select a few data from the training dataset
located in the vicinity of the testing datum; Secondly, train an
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FNN with only these selected training data, and finally apply the
learned network to predict the outputs of the testing data.

The proposed RL-RWN will improve the performances of RWN
with the modified Moving Least Squares (MLS) method based on reg-
ularization model. The MLS method, proposed by Lancaster and Salk-
auskas in [13], represents the local approximation by adding some
weighted functions that character the influence of training data on
testing data in the square error. But in the MLS method, the basis
are assumed to be independent over the set of inputs of training data,
which guarantees the existence and uniqueness of the solution.
However, in the proposed RL-RWN with random hidden-layer
weights and biases, may result in an ill-posed linear system. In this
case, we employ the well-known regularization model in our algo-
rithm development. It has been observed that with such a regulariza-
tion loss function and local modelling concept, the generalization of
the RWN has been greatly improved. Experimental comparisons of
RL-RWN with Radial Basis Function (RBF) networks and RWN on
Auto-MPG and surface reconstruction datasets are quite supportive.

The remainder of the paper is organized as follows. Section 2
gives a brief review of RWNs. Section 3 describes a new local learn-
ing algorithm for training RWNs based on an improved MLS
method. Section 4 reports experimental results with comparisons.
Section 5 concludes this paper.

2. Brief review of RWN

Some basic concepts and related works about RWN are briefly
reviewed in this section to provide a background for the proposed
RL-RWN in Section 3.

The output of an FNN with L hidden-layer nodes (additive or
RBF nodes) can be represented by

f ðxÞ ¼
XL

i¼1

biGðai; bi;xÞ; x 2 Rn; ð1Þ

where ai 2 Rn and bi 2 R are the input weights and bias of hidden-
layer nodes, respectively, bi 2 Rm is the output weight, and
Gðai; bi;xÞ denotes the output of the i-th hidden-layer node with
respect to the input x. Additive and RBF hidden-layer nodes are
often used in applications.

For a given data set fðxi; tiÞgN
i¼1 � Rn � Rm, where xi is an n� 1

input vector and ti is the corresponding m� 1 observed vector,
an FNN with L hidden-layer nodes approximating these N training
data with zero error means that there exist ai; bi and
bi ði ¼ 1;2; . . . ; LÞ such that

XL

i¼1

biGðai; bi; xjÞ ¼ tj þ ej; j ¼ 1;2; . . . ;N; ð2Þ

where ej is the measure error. The system (2) can be rewritten in the
following compact form:

Hb ¼ Tþ e; ð3Þ

where

H ¼

Gða1; b1; x1Þ � � � GðaL; bL;x1Þ
..
. . .

. ..
.

Gða1; b1; xNÞ � � � GðaL; bL;xNÞ

2
664

3
775

N�L

; ð4Þ

b ¼
b>1

..

.

b>L

2
664

3
775

L�m

; T ¼

t>1
..
.

t>N

2
664

3
775

N�m

and e ¼

e>1
..
.

e>N

2
664

3
775

N�m

: ð5Þ

Here, b> denotes the transpose of the vector b, H is the hidden-layer
output matrix with respect to the input vectors x1; x2; . . . ;xN .

According to RWN, the input weights ai and bi need not to be
adjusted during the process of learning and can be assigned with
random values. Then, Eq. (3) becomes a linear equation system
and the output weight b can be obtained directly, that is,

b̂ ¼ HyT; ð6Þ

where Hy is the Moore–Penrose pseudo inverse of the hidden-layer
output matrix H [14]. There are several methods to calculate the
Moore–Penrose pseudo inverse of a matrix, including orthogonal
projection method, orthogonalization method, iterative method
and singular value decomposition. If H>H is nonsingular, then
Hy ¼ ðH>HÞ�1

H>.
Algorithm RWN. Given a training data set fðxi; tiÞgN

i¼1 � Rn� Rm,
choose the hidden-node output function Gða; b;xÞ and the hidden-
node number L.

Step 1. Randomly assign the input parameters ðai; biÞ;
i ¼ 1;2; . . . ; L.

Step 2. Compute the hidden-layer output matrix H as in (4).
Step 3. Calculate the output weight b̂ ¼ HyT.

3. Proposed algorithm RL-RWN

In many applications, training data often have their own influ-
ential strength. Although weighted learning algorithms can
embody varying proportions in the square error, the proportions
are fixed in the process of learning. That is, they do not change with
the variation of testing data. Therefore, it cannot effectively reflect
the local features of models. In order to address the influences of
training data on the testing performance, we propose a novel
learning algorithm by means of the MLS method and a regulariza-
tion model.

In order to embody the influences of the training data on the
testing samples, a new objective function and some notation are
introduced [15,16].

3.1. Notation

Let ðRmÞN be the direct sum of N Hilbert space Rm, then it is a
real Hilbert space [15]. The inner product h; iN on ðRmÞN is defined
as

x; yh iN ¼
XN

i¼1

hxi; yii ¼
XN

i¼1

Xm

j¼1

xijyij ð7Þ

and the induced norm on ðRmÞN by h; iN is given by

kxkN ¼
XN

i¼1

Xm

j¼1

x2
ij

 !1
2

; ð8Þ

where x ¼ ½x1;x2; . . . ; xN�; y ¼ ½y1; y2; . . . ; yN� 2 ðRmÞN and xi ¼
½xi1; xi2; . . . ; xim�>, yi ¼ ½yi1; yi2; . . . ; yim�

> 2 Rm; i ¼ 1;2; . . . ;N.
For a given training set fðxi; tiÞgN

i¼1 # D� Rm and a set of
weighted functions fwið�ÞgN

i¼1 from Rn to Rþ, where D is a bounded
domain of Rn, we can construct a new norm jj � jjz with respect to
the point z 2 D on the direct sum ðRmÞN of N Hilbert space
ðRm; h; iÞ to give a description of objective function.

Let

WðzÞ ¼ diag w1ðzÞ;w2ðzÞ; . . . ;wNðzÞð Þ ð9Þ

be the weighted matrix with respect to the variable z, then for any
two vectors u ¼ ½u1;u2; . . . ;uN� and v ¼ ½v1;v2; . . . ;vN� in ðRmÞN , we
can define an inner product h; iz on ðRmÞN as follows:

hu;viz ¼
XN

i¼1

wiðzÞhui;vii; ð10Þ
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