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a b s t r a c t

Kernel Principal Component Analysis (KPCA) is a technique widely used to understand and visualize non-
linear variation patterns by inverse mapping the projected data from a high-dimensional feature space
back to the original input space. Variation patterns often occur in a small number of relevant features
out of the overall set of features that are recorded in the data. It is, therefore, crucial to discern this set
of relevant features that define the pattern. Here we propose a feature selection procedure that augments
KPCA to obtain importance estimates of the features given the noisy training data. Our feature selection
strategy involves projecting the data points onto sparse random vectors for calculating the kernel matrix.
We then match pairs of such projections, and determine the preimages of the data with and without a
feature, thereby trying to identify the importance of that feature. Thus, preimages’ differences within
pairs are used to identify the relevant features. An advantage of our method is it can be used with any
suitable KPCA algorithm. Moreover, the computations can be parallelized easily leading to significant
speedup. We demonstrate our method on several simulated and real data sets, and compare the results
to alternative approaches in the literature.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Advances in signal acquisition and computational processing
coupled with cheap storage have resulted in massive multivariate
data being collected in today’s processes like semiconductor man-
ufacturing, automobile-body assemblies, inspection systems, etc.
The data can be in form of spatial profiles, time series or images
where the measurements are recorded over several features. These
features are affected by different sources of variation which result
in variation patterns in the data. The goal, therefore, is to identify
these sources of variation based on the process data collected.
Moreover, the variation pattern may be present in only a small
subset of the process variables that are collected. Finding this rel-
evant subset of features is, therefore, critical to understand the
process, and is the focus of our work presented in this paper.

Principal Component Analysis (PCA) is a common technique to
identify variation pattern in data by projecting along the directions
of maximum variability in the data. However, PCA can only identify
linear relationships among features in the data. Kernel Principal

Component Analysis (KPCA) extends PCA to the case where data
contain non-linear patterns as shown by Schölkopf et al. [1]. KPCA
identifies non-linear patterns in data by mapping the data from
input space to a high-dimensional (possibly infinite) feature space,
and performing PCA in the feature space. This is achieved by
employing the kernel trick [2]. Thus, only calculations in terms of
dot products in the input space are required, without an explicit
mapping to the feature space. KPCA is widely used for nonlinear
process monitoring [3–5], fault detection and diagnosis [6–9],
and anomaly detection [10,11].

To visualize the variation pattern in input space, an inverse
transform is used to map the denoised data from feature space
back to the input space. The exact preimage of a denoised point
in feature space might not exist, so that a number of algorithms
for estimating approximate preimages have been proposed [12–
15]. Also, [16,17] considered meta-methods to improve the preim-
age results by averaging from ensembles.

Our task now is to identify the relevant subset of the original set
of features over which the pattern exists (a feature selection task).
The difficulty is to handle the non-linear relationships between
features in input space. Because the feature space in KPCA already
provides an avenue to consider higher-order interactions between
features, it is more appealing to apply a feature selection procedure
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in feature space itself. However, it is not always possible to obtain
the feature representation in feature space (for example, in the
case of a Gaussian kernel) because the data are not explicitly
mapped. Therefore, the challenge here is to perform feature selec-
tion in the feature space.

Some work has considered feature selection in feature space for
supervised learning. A weighted feature approach was provided by
Allen [18] where weights are assigned to features while computing
the kernel. This feature weighting is incorporated into the loss
function corresponding to classification or regression problem
and a lasso penalty is put on the weights. The features correspond-
ing to non-zero weights obtained after minimizing the objective
(loss function with penalty) are considered the important ones.
Similarly, recent work [19,20] also employed feature weighting
for the cases of Support Vector Machine (SVM) classification and
regression, respectively. For both the cases, an anisotropic Gauss-
ian kernel was used to supply weights to features. Specifically,
Maldonado et al. [19] provided an iterative algorithm for solving
the feature selection problem by embedding the feature weighting
in the dual formulation of SVM problem. The algorithm begins with
an initial set of weights. At each iteration, it solves the SVM prob-
lem for the given set of feature weights, updates the weights using
the gradient of the objective function, and removes the features
that are below a certain given threshold. This procedure is repeated
till convergence. Finally, the features obtained with non-zero
weights are considered important.

Since KPCA is unsupervised, we next consider feature selection
in feature space for unsupervised learning. One common aspect of
all these algorithms, similar to their counterparts in supervised
setting, is they involve some kind of feature weighting mechanism,
and the relevant features are obtained by regularizing (shrinking)
the weights of irrelevant features using some criteria. A method
for feature selection in Local Learning-Based Clustering [21] was
proposed by Zeng and ming Cheung [22]. The feature selection is
achieved by regularizing the weights assigned to features. A
method to measure variable importance in KPCA was suggested
by Muniz et al. [23]. They computed the kernel between two data
points as weighted sum of individual kernels where each individ-
ual kernel is computed on a single feature of each of the two data
points, and the weights assigned to each kernel serve as a measure
of importance of the feature involved in computing the kernel.
They formulated a loss function where a lasso penalty was
imposed on the weights to determine the non-zero weights (and
the corresponding relevant features). In addition to feature selec-
tion in feature space for unsupervised learning, there exist several
other feature selection procedures for unsupervised learning that
operate in the input space. Laplacian Score (LS) was proposed by
He et al. [24] for each feature to estimate its ability to preserve
local structure. The authors construct a nearest neighbor graph,
and identify the important features as those which maintain this
graph structure. Multi-Cluster Feature Selection (MCFS) proposed
by Cai et al. [25] used spectral analysis to select the features that
preserve the multi-cluster structure of the data. The authors com-
pute the nearest neighbors graph, define weights on edges in the
graph, construct the graph Laplacian, and solve the generalized
eigen-problem [26] to obtain the top K eigenvectors. For each
eigenvector, the contribution of each feature is found by solving
a L1-regularized regression. Each feature now has K contribution
values, and the maximum of it is assigned as the MCFS score of
the feature. The features with higher MCFS scores are important.
Unsupervised Discriminative Feature Selection (UDFS) proposed
by Yang et al. [27] aims to select the most discriminative features
which preserve the local structure of the data (via manifold) while
simultaneously accounting for feature correlation. The authors
assume the existence of a linear classifier that classifies each
data point to a class. They propose learning the classifier that

maximizes their local discriminative score. To this end, they pro-
pose a regularized optimization problem by inducing ‘2;1 norm
on the coefficients of the classifier. Note that each coefficient of
the linear classifier corresponds to a feature in the dataset. They
also propose an iterative algorithm to solve this optimization prob-
lem. The top features are determined based on sorting the ‘2 norm
of the coefficient vectors over all iterations in descending order.

The approaches provided in the literature focus on the case
when noise-free training data are available. However, this is not
the case in areas like manufacturing variation analysis. In practice,
the data are corrupted with noise and has a lot of irrelevant fea-
tures. Thus, we work with a noisy data set from which we need
to find the relevant subset of the features over which the patterns
in the data exist. To this end, we propose our novel approach.

As pointed out previously, an innovative way to do feature
selection in high-dimensional feature space is to assign weights
to features in input space. By using such an approach, we can com-
pute the kernel using all the features instead of iteratively comput-
ing it using a subset of features at a time. The goal next is to
identify the weights (by some regularization criterion) so that
the non-zero weights correspond to the relevant features. We pro-
pose an alternative approach for this feature weighting mecha-
nism. Instead of trying to determine the feature weights through
a regularization approach, we multiply the features by sparse ran-
dom vectors whose entries are independent and identically distrib-
uted drawn from a distribution (such as Gaussian). After projecting
data points onto random subsets of features, we measure feature
importance from differences in preimages, where preimages are
computed with and without a feature. Therefore, more important
features are expected to result in greater differences. The process
is repeated iteratively with different sparse random vectors and
the differences are averaged to estimate the final feature impor-
tance. Our approach above provides robustness to irrelevant fea-
tures in the data by being able to project only on a small random
subset of features at a time, and calculating the final mapped data
matrix in input space from an ensemble of feature subsets. Another
advantage of our approach is it works with any KPCA preimage
algorithm.

We organize the remaining part of our paper as follows. Section
2 provides a brief description of different methods used to visual-
ize the variation patterns in KPCA. For our feature selection
method, we can consider any one of them as the base algorithm.
Section 3 presents a mathematical description of our methodology.
Section 4 shows the results of implementing our algorithm on sev-
eral simulated and real datasets. Finally Section 5 provides
conclusions.

2. Background on preimages in KPCA

KPCA is equivalent to PCA in feature space [1]. Let X denote the
data set with N instances and F features where the instances are
denoted by x1;x2; . . . ;xN . Similar to PCA, we want to find the eigen-
values and eigenvectors of the covariance matrix C in feature
space. If the corresponding set of points mapped in the feature
space uðxiÞ; i ¼ 1;2; . . . ;N are assumed to be centered, C can be
calculated by

C ¼ 1
N

XN

i¼1

uðxiÞuðxiÞ0 ð1Þ

The eigenvalues k and eigenvectors v of matrix C are given by

Cv ¼ kv ð2Þ

It can be shown that an eigenvector corresponding to non-zero
eigenvalue of C can be written as a linear combination of
uðx1Þ; . . . ;uðxNÞ. Using this simplification reduces the original
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