
Graph indexing for large networks: A neighborhood tree-based approach

Zhen Lin a,b,⇑, Yijun Bei c

a College of Computer Science & Technology, Zhejiang University, Hangzhou 310027, China
b Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
c School of Software Technology, Zhejiang University, Hangzhou 310027, China

a r t i c l e i n f o

Article history:
Received 17 March 2014
Received in revised form 4 August 2014
Accepted 29 August 2014
Available online 16 September 2014

Keywords:
Graph querying
Graph matching
Neighborhood tree
Indexing
Social network

a b s t r a c t

Graphs are used to model complex data objects and their relationships in the real world. Finding occur-
rences of graph patterns in large graphs is one of the fundamental graph analysis tools used to discover
underlying characteristics from these complex networks. In this paper, we propose a new tree-based
approach for improving subgraph-matching performance. First, we introduce a new graph indexing
mechanism known as Neighborhood Trees (NTree), which records the neighborhood relationships of
each vertex in the large graph to filter negative vertices. Second, we decompose a query graph into a
set of neighborhood trees and only a subset of candidate trees, which can properly recover the original
query graph. In this way, the tree-at-a-time method is used to obtain the matched graphs. Third, we
employ a graph query optimizer to determine the neighborhood tree selection order on the basis of
the cost evaluation of tree join operations. Experiments on both real and synthetic databases demon-
strate that our approach is more efficient than other state-of-the-art indexing methods.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Graphs are used to model many complex data objects and their
relationships in the real world. In recent years, an increasing num-
ber of large networks such as social networks, chemical com-
pounds, semantic web, and protein networks have appeared. The
sizes of these large graphs can be in excess of millions of vertices
and edges. Methods for managing, processing, and analyzing these
graph data have become important research topics. Finding the
occurrences of graph patterns or subgraphs in large graphs is one
of the fundamental uses for graph analysis tools because they
denote underlying characteristics in complex networks. Subgraph
query or matching approaches have been widely used in areas such
as chemical informatics [1], proteins analysis [2], biochemistry [3],
web applications [4], and computer vision [5]. For example, given a
large protein network, biologists may want to determine all occur-
rences of structural motifs in 3D proteins by using protein contact
maps [6].

Graph searching is an important task in a variety of applications
and falls under two scenarios: subgraph querying and subgraph

matching. The classical graph-querying problem is to find all
supergraphs of the query pattern from a graph database, whereas
graph matching involves finding all subgraphs of the database
graph, which are isomorphic to the query graph. It is clearly ineffi-
cient to perform an exhaustive search in the database because the
subgraph isomorphism itself is a non-deterministic polynomial
time (NP)-complete problem.

Graph indexing is a common technique for performing searches
in large graph databases. Many indexing mechanisms such as gIn-
dex [7], Tree+D [8], TreePi [9], FERRARI [10], and frequent subgraph
(FG)-index [11] have been developed for subgraph querying pro-
cesses. In these approaches, frequent features are extracted from
graphs and are leveraged to build graph indices. As a result, expen-
sive preprocessing is required due to the frequent pattern mining
processes in index construction such as paths, trees, and sub-
graphs. In addition, non-mining based techniques, such as Clo-
sure-tree [12], GCoding [13], LnGCoding [14], and GiS [15], have
been proposed for graph queries. For the purpose of indexing,
structural information of graphs are mapped into graph signatures
such as numerical space in GCoding or line graphs in GiS. However,
such indexing was developed mainly for searching graphs in a
large number of small graphs.

To solve the problem of graph matching in a large graph, neigh-
borhood signature-based techniques such as GraphQL [16], SPath
[17], and GADDI [18] have been proposed. In GraphQL [16], profiles

http://dx.doi.org/10.1016/j.knosys.2014.08.025
0950-7051/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: College of Computer Science & Technology, Zhejiang
University, Hangzhou 310027, China.

E-mail addresses: linz@illinois.edu, nblinz@gmail.com (Z. Lin), byj@zju.edu.cn
(Y. Bei).

Knowledge-Based Systems 72 (2014) 48–59

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/locate /knosys

http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2014.08.025&domain=pdf
http://dx.doi.org/10.1016/j.knosys.2014.08.025
mailto:linz@illinois.edu
mailto:nblinz@gmail.com
mailto:byj@zju.edu.cn
http://dx.doi.org/10.1016/j.knosys.2014.08.025
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys


around a vertex neighborhood are used for local pruning, and
global structural information is leveraged to simultaneously
reduce the overall search space. In SPath [17], the shortest paths
around a vertex neighborhood are leveraged as basic indexing
units, and a more efficient path-at-a-time method is introduced
to process graph queries. In GADDI [18], neighboring discriminat-
ing substructure (NDS) distance measurement is adopted as the
basis of the pruning method, and an index-based graph matching
method is proposed for achieving high pruning power and linear
size scales. To reduce search space, the cost model and query plan
optimizer are both employed in these up-to-date approaches.
However, when using neighborhood profiles or paths as indexing
units to prune negative vertices, structural information around
the vertices may be lost. As a result, false positive vertices remain
as candidates and require further filtering. Moreover, too many
join operations are required compared with more complex
structures such as trees or subgraphs.

In this paper, we propose a new tree-based approach for
improving subgraph searching performance. First, we introduce a
new graph-indexing mechanism known as Neighborhood Trees
(NTree), which records the neighborhood relationships of each
vertex in the large graph to filter negative vertices. Because trees
contain more information than paths or vertex profiles, the NTree
has stronger pruning power. Second, we decompose a query graph
into a set of trees, and only a subset of candidate subtrees that can
properly recover the original query graph are selected. These
candidate subtrees are then joined to reconstruct the query graph.
In this way, the tree-at-a-time method is used to obtain the
matched graphs. Third, we employ a graph query optimizer to
determine the vertex searching order on the basis of the cost eval-
uation of tree joining operations. Our work has the following
contributions:

1. We propose a structural pattern-based graph-matching frame-
work. First, candidate vertices are identified. Then, a joining
process by comparing relationships of candidate vertices in
the large graph to the original query graph is used to further
verify these candidates. Both vertex pruning and query recon-
structing abilities of different structural patterns such as neigh-
borhood paths, trees, and graphs are evaluated. As a result,
neighborhood trees are selected to be the most feasible
candidates (Section 3).

2. To reduce the number of candidates, we propose a new cost-
effective graph indexing technique, NTree, which makes use
of trees around the vertex neighborhood for pruning purposes.
Canonical unordered trees are leveraged, and the string com-
parison technique is used to accelerate the subtree containment
process (Section 4).

3. To address the second step, we propose an efficient searching
method for joining the neighborhood trees and reconstructing
the original query graph. In addition, we design a graph query
cost model on the problem of neighborhood tree selection to
optimize the search order (Section 5).

4. We conduct extensive experiments by using both real and syn-
thetic databases. We compare our indexing method, NTree,
with state-of-the-art path-based indexing methods. The results
show that our method outperforms these indexing methods in
terms of graph matching performance (Section 6).

2. Related works

The subgraph isomorphism test [19,20,5,21] is a well-known
NP-complete problem that has been widely studied in recent
years. For subgraph searching, a large number of index-based
graph matching and searching frameworks have been proposed
including gIndex [7], TreePi [9], FG-index [11], NB-index [22],

LW-index [23], Tree+D [8], GCode [13], GPTree [24], Closure-tree
[12], Turboiso [25], SODA [26], SING [27], and GiS [15]. These
graph-indexing approaches have been designed mainly for per-
forming subgraph querying from a graph database consisting
of many small- or medium-sized graphs. Most of these indexing
approaches such as gIndex [7], Tree+D [8], and FG-index [11] all
make use of frequent patterns in the graph database as the
basic indexing structure. Consequently, expensive preprocessing
is required to mine frequent patterns when constructing graph
indices. The encoding method GCode [13] assigns a signature
known as level-n path tree to each vertex based on its local
structures. As a result, graph codes are obtained by combining
all vertex signatures. SING [27] uses the concept of features
and makes use of feature locality information. gStore [28] trans-
forms a Resource Description Framework (RDF) graph into a
data signature graph and uses the vertex signature (VS)*-tree
index with light maintenance overhead. A filtering rule in gStore
is also developed for answering exact SPARQL queries in a uni-
form manner. In this paper, a different encoding scheme is
introduced. We make use of the level-wise signature that
records the neighborhood edge to construct the neighborhood
tree as the graph index. Neighborhood vertices arranged in the
form of rings are recorded as well as the occurring number of
edges in each level.

To address the inexact matching problem, Grafil [29] clusters
features according to their selectivities and applies a multi-filter
strategy. Edge deletions are transformed into feature misses,
and an upper bound is used on the maximum number of allowed
feature misses for graph filtering. Zhu et al. [30] proposed a novel
search paradigm, TreeSpan, to conduct similarity all-matching
that conforms a similarity threshold h by first conducting exact
all-matching on a minimal set of spanning trees. A rigid theoretic
analysis shows that this approach can significantly reduce the
time required for conducting exact all-matching compared with
the existing techniques. In SAGA [31], Tian et al. proposed a more
flexible indexing approach that can support both vertex insertions
and deletions. A flexible graph distance model is employed to
measure similarities between graphs, and matched fragments
are assembled into large matches. However, in this similar graph
searching approach, only a subset of approximate matching
results is obtained. Ness [32] is another tool for inexact matching
that focuses on the top� k approximate matches. In this method,
a neighborhood-based similarity measure is proposed that avoids
costly graph isomorphisms and edits distance computation. SLQ
[33] is a framework enabling schemaless and structureless graph
query that can automatically learn an effective ranking model
with no manual preprocessing. This method returns matches by
using graph sketches and belief propagation. The simB method
[34] is proposed for edit distance-based similarity search
problems, whereby a lower bound based on the branch structure
is proposed to reduce the search space, and the b-tree index is
adopted to facilitate the query processing. GSimSearch [35] is
another efficient algorithm for graph similarity query. Unlike
the simB method, GSimSearch exploits the number of common
fixed-length paths between pairs of graphs and also adopts
degree-associated structural information to enhance runtime
performance.

In addition to the searching subgraph problem from a large
number of small graphs, methods used to search a subgraph in
a large graph such as a social network are also addressed
[16,17,36,37,18,38,39]. Several up-to-date approaches such as
GraphQL [16], SPath [17], and GADDI [18] are proposed to obtain
all occurrences of a query in a large graph. In GraphQL [16],
neighborhood profiles are first employed to prune vertices
individually. Then, the overall search space by considering all ver-
tices in the pattern is simultaneously reduced. In SPath [17],

Z. Lin, Y. Bei / Knowledge-Based Systems 72 (2014) 48–59 49



Download English Version:

https://daneshyari.com/en/article/403579

Download Persian Version:

https://daneshyari.com/article/403579

Daneshyari.com

https://daneshyari.com/en/article/403579
https://daneshyari.com/article/403579
https://daneshyari.com

