
Planning of proactive behaviors for human–robot cooperative tasks
under uncertainty

Woo Young Kwon, Il Hong Suh ⇑
Department of Electronics and Computer Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, Republic of Korea

a r t i c l e i n f o

Article history:
Received 25 March 2013
Received in revised form 7 August 2014
Accepted 29 August 2014
Available online 16 September 2014

Keywords:
Temporal planning
Proactive interaction
Decision theoretic model
Probabilistic graphical model
Proactive planning

a b s t r a c t

For seamless human–robot cooperation, a robot may need to take several steps proactively to minimize
unnecessary delays between the human’s intention and the robot’s corresponding reactions. By predict-
ing exogenous events from human intention and generating proactive plans based on the predicted
events, a robot can reduce delays and significantly improve interaction. In this paper, we propose a deci-
sion-theoretic proactive planning framework that selects best proactive actions and the best times for
those actions as a means to improving human–robot interactions. To this end, we developed a composite
node temporal Bayesian network as an extension to handle both the nature of an event and its time of
occurrence within a single framework. We also developed a composite node temporal influence diagram
that combines a composite node temporal Bayesian network with a limited memory influence diagram to
solve proactive planning problems. Experimental results obtained using a robot assistant in a manual
assembly task demonstrate the effectiveness of our proposed framework.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

When humans interact with one another, they usually predict
the intentions of others and synchronize their reactions accord-
ingly [1,2]. For example, when dancing, people need to continu-
ously predict the intentions of their partners, and on the basis of
those predictions, proactively respond with the correct motion at
the correct time. Proactive responses to predicted human inten-
tions result in seamless interactions among people.

Conversely, many human–robot interactions follow a request-
and-react pattern that evolves into a rigid turn-taking pattern with
induced delays that disrupt seamless interactions. These delays
retard the overall speed of human–robot interactions. Moreover,
many people become frustrated and annoyed when many delays
occur in a robot reaction. Therefore, seamless interactions between
humans and robots are important in human centered robotic appli-
cations. To reduce delays and thereby facilitate seamless interac-
tions between humans and robots, a robot should be able to
predict future events based on observed human activities. Predic-
tive abilities facilitate anticipation and smart decision-making by
allowing a robot to determine which actions to perform proactively

to obtain or avoid a predicted situation and minimize delays for
both the human and the robot.

For example, robot assistants used on a manufacturing line that
includes human workers can predict human assembly tasks and
anticipate the components and/or tools required for future work.
Another example is a smart robot assistant in the kitchen that
can predict events during the cooking process. Based on the pre-
dicted human related events that occur during the cooking process,
the robot can then infer the kinds of utensils and/or ingredients
that will be needed and when. The next step for a seamless inter-
action is to make a plan providing the proper assistance at the
proper time. To achieve this, a robot should perform several prepa-
ratory actions prior to the expected time of the human-related
events to minimize the wait time between the human and the
robot. Consequently, plans for seamless interaction describe the
proactive execution of robotic actions. We call seamless human–
robot interactions ‘‘proactive human–robot interactions’’ and the
act of planning for proactive interactions ‘‘proactive planning’’.

Proactive planning has the following requirements: First, the
planner needs to work in a dynamic environment. Most existing
planners assume a static environment that only changes when
the robot performs an action, i.e, there are no exogenous changes
from the viewpoint of the robot. However, changes in the real
world are caused not only by robot actions but also by exogenous
events generated from human activities. Several temporal planning
methods deal with predictable exogenous events that are not
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under the planning agent’s control but occur instead at known
times. Examples of these include the arrival and departure times
of planes at an airport and entries in a railway timetable. However,
exogenous events from human activities cannot be treated in such
a simple manner because humans act based on their intentions and
understanding of a particular situation. As a consequence, there is
no such thing as a simple timetable of human activities. Instead,
events from human activities have complex causal–temporal rela-
tionships. Therefore, exogenous events should be estimated using
the complex causal–temporal relationships among the events.

Second, the uncertainty in both the nature and time of an event
has to be considered during a planning stage. In the real world,
exogenous events from human activities are not perfectly predict-
able because a robot cannot fully observe the human intention
behind the events. In addition, the effects of a robot’s actions in
the real world also have a certain degree of uncertainty. The uncer-
tainty in human–robot interaction involves a combination of both
the nature of the events and when they occur. However, despite
the time of occurrence and nature of an event being two side of
the same coin, such issue have been dealt with independently in
both planning and scheduling problems [3]. For proactive planning,
these two uncertainties need to be modeled simultaneously.

Third, proactive planning methods have to handle problems
with an uncertain duration of actions and events. In many planning
problems, including human–robot interactions, it is natural to con-
sider durative actions and events with uncertainty. However, many
existing methods, such as classical planning and Markov decision
processes, assume instantaneous transitions of actions and events.

Finally, the modeling of a time-dependent utility is required for
proactive planners. Proactive planning requires that human inten-
tions and the outcomes of robot actions are synchronized in the
context of both event types and their occurrence times. For
instance, when a person has the intention to use a service, a smart
robot should provide the robot service at the proper time. If a
planner uses only hard temporal constraints, only an exact syn-
chronization can be modeled. However, in many cases, not all pairs
of robot actions and human intentions may be synchronized
exactly. If a robot has an insufficient amount of time to prepare
two services that are expected to be required in a future human–
robot cooperative task, the robot should decide whether to prepare
the first service; if the robot skips the first service, the robot can
have sufficient time to prepare the second. Therefore, there is a
trade-off between the delay in the two services and skipping the
first altogether. In this case, it is necessary that the penalty for a
delay be modeled using a time-dependent utility.

However, existing planners do not fully satisfy the above four
requirements. To satisfy the requirements of proactive planning
problems, we developed hybrid temporal influence diagrams
[4,5] as an extension of hybrid temporal Bayesian networks [6].
Hybrid temporal Bayesian networks represent the time of an event
as an explicit random variable in a continuous time domain. As a
result, both the explicit time and nature of an exogenous event
can be inferred within one framework, and a robot can decide on
the best type of proactive actions and their occurrence times corre-
sponding to the exogenous events based on human intention.
However, the computational complexity of a hybrid temporal
influence diagram is too high even when the number of decision
variables is small because the simultaneous global optimization
of the types of proactive actions and their occurrence times is a
very time-consuming process.

In this paper, we propose the use of composite node temporal
influence diagrams (CNTIDs), based on limited information influ-
ence diagrams (LIMIDs) [7], as an improved proactive planning
method that has computationally feasible solutions to the planning
problem. We also improve hybrid temporal Bayesian networks to
be computationally effective using a composite node with a

combination of the event types and time of occurrence, instead
of using hybrid Bayesian network frameworks.

The remainder of this paper is organized as follows. Related
works are first presented in Section 2. Next, Section 3 describes
the composite node temporal Bayesian network used to predict
both the causality and time of occurrence of a future situation in
a probabilistic manner. Section 4 then presents the CNTIDs used
in the proposed proactive planning framework to simultaneously
determine the nature and time of a proactive action. Next, Section
5 presents a method for solving CNTIDs. Experimental results are
then provided in Section 6. Finally, Section 7 ends this paper with
some concluding remarks.

2. Related works

As mentioned in the previous section, there are four require-
ments to the planning problem for proactive human–robot interac-
tions: dynamic environments, causal and temporal uncertainty,
durative actions, and time-related cost functions. Obviously, these
requirements are related to temporal planning problems, and are
partially satisfied in the existing temporal planning methods. In
this section, we introduce related works to determine the relation-
ship between the requirements of proactive planning problems
and existing temporal planning methods.

Many researchers have addressed the problem of planning with
temporal information as an extension of classical STRIPS planning
[8]. Classical planning problems assume that the environment is
deterministic and fully observable. They also assume a static envi-
ronment that only responds to the agent’s actions [9]. Further,
actions and their outcomes in classical planning are assumed to
be instantaneous. These assumptions create problems when deal-
ing with real-world planning problems are being dealt with
because, in reality, the results of actions and their outcomes have
uncertainties and, each action takes a different duration.

Earlier research studies, e.g., parcPLAN [10], ZENO [11], and
TLPlan [12], relaxed the assumption of instantaneous actions and
events by explicitly modeling durative actions and temporal con-
straints. They relied on temporal constraint satisfaction for the
temporal aspect of different actions and events.

A number of more recent planning methods have also relaxed
the assumption of a static environment, e.g., CRIKEY [13], SGPlan
[14], LPG-TD [15], TGP [16], and TPSYS [17]. They are capable of
handling predictable exogenous events from the context of a timed
initial literal, which describe exogenous events occurring at a given
absolute time independently of the plan execution [18]. Planning
domain description language 2.2 (PDDL2.2) [19] supports predict-
able exogenous events in the context of a timed initial literal.
Although a timed initial literal represents a dynamic environment
in part, it is insufficient to represent all aspects of exogenous
events in human–robot interactions. A timed initial literal only
supports predictable exogenous events in a deterministic manner,
whereas there are many unpredictable exogenous events in many
cases of human–robot interactions.

Recently, several planners, such as OPTIC [20] and SGPlan5 [21],
support temporal planning with time-dependent continuous costs,
while many previous temporal planners primarily support exact
synchronization among events and actions based on the disjunc-
tive temporal problem, in which only hard temporal constraints
can be modeled. These recent methods can handle time-related
soft constraints. Planning domain description language 3.0
(PDDL3.0) [22] supports these time-dependent soft constraints in
the form of logical expressions.

Uncertainty is another important aspect of real-world planning
problems. For probabilistic temporal planning, researchers have
mainly focused on decision theoretic approaches. Influence
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