
Measuring effectiveness of ontology debugging systems

Qiu Ji a,b,⇑, Zhiqiang Gao a,b, Zhisheng Huang c, Man Zhu a,b

a School of Computer Science and Engineering, Southeast University, Nanjing, China
b Key Laboratory of Computer Network and Information Integration, Southeast University, Ministry of Education, Nanjing, China
c Department of Computer Science, Vrije Universiteit, Amsterdam, The Netherlands

a r t i c l e i n f o

Article history:
Received 30 October 2013
Received in revised form 28 July 2014
Accepted 28 July 2014
Available online 12 August 2014

Keywords:
Semantic Web
Ontology
Ontology debugging
Inconsistency handling
Effectiveness measure

a b s t r a c t

Ontology debugging aims to provide users with justifications for an entailment in OWL ontologies. So far,
many ontology debugging algorithms have been proposed and several ontology debugging systems are
available. There has been some work on evaluating these systems with the efficiency as the main evalu-
ation measure. However, existing systems may fail to find all justifications for an entailment within a
time limit and may return incorrect justifications. Therefore, measuring their effectiveness by considering
the correctness of justifications and the completeness of a found set of justifications is helpful. In this
paper, we first give a survey of existing ontology debugging approaches and systems. We then evaluate
both the effectiveness and the efficiency of existing ontology debugging systems based on a large collec-
tion of diverse ontologies. To assess the effectiveness of an ontology debugging system, we first propose a
method to construct the reference justification sets and define the degrees of correctness and complete-
ness of the system. Then we construct a dataset containing 80 ontologies with significantly different sizes
and expressivities. Based on the proposed evaluation measures and the constructed dataset, we do com-
prehensive experiments. The results show the advantages and disadvantages of existing ontology debug-
ging systems in terms of correctness, completeness and efficiency. Based on the results, we provide
several suggestions for users to choose an appropriate ontology debugging system and for developers
to design an ontology debugging algorithm and build an ontology debugging system.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that ontologies – explicit and formal specifica-
tions of the terms in a domain and the relations among them
[28] – play an important role in the formal representation of
knowledge on the Semantic Web. Since Web Ontology Language
(OWL) [2] became a W3C recommendation standard, it has been
used in many application domains such as e-Science, bio-informat-
ics and geography [34]. Description Logics (DLs) [3], which are a
family of knowledge representation languages, provide a well-
defined formal semantics for OWL. They make it possible to infer
implicit axioms from a set of explicit axioms, where an inferred
axiom is called an entailment. One of the important reasoning tasks
of an OWL reasoner is to check if an axiom can be entailed by an
ontology consisting of a set of axioms. This task is called entailment
checking. Two special subtasks of entailment checking are unsatis-

fiability checking of a concept and inconsistency checking of an
ontology.1 These reasoning tasks have been proven essential to
design and maintain high-quality ontologies [84] and answer queries
[37].

In practice, building ontologies is an error-prone effort and log-
ical contradictions are always unavoidable [50,52,55,56,62,69,83].
When an ontology contains errors, some entailments of the ontol-
ogy can be undesirable. In such a case, users may want to know
which parts of the ontology cause the undesirable entailments
and decide which axioms in the ontology can be modified. There-
fore, providing explanations for the undesirable entailments is an
important task of ontology engineering [78]. Ontology debugging
aims to provide users with explanations of entailments in an
OWL ontology, by computing justifications for the entailment. A
justification is a minimal set of axioms that can explain an entail-
ment. In real ontologies, there may exist many justifications for
some entailments and the reasons for entailments may range from
fairly simple localized reasons to highly non-obvious reasons [33].

http://dx.doi.org/10.1016/j.knosys.2014.07.023
0950-7051/� 2014 Elsevier B.V. All rights reserved.

⇑ Corresponding author at: School of Computer Science and Engineering, South-
east University, Nanjing, China.

E-mail addresses: jiqiu@seu.edu.cn (Q. Ji), zqgao@seu.edu.cn (Z. Gao), huang@cs.
vu.nl (Z. Huang), mzhu@seu.edu.cn (M. Zhu).

1 A concept is unsatisfiable if it is interpreted as an empty set. An ontology is
inconsistent if it has no model.

Knowledge-Based Systems 71 (2014) 169–186

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/ locate /knosys

http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2014.07.023&domain=pdf
http://dx.doi.org/10.1016/j.knosys.2014.07.023
mailto:jiqiu@seu.edu.cn
mailto:zqgao@seu.edu.cn
mailto:huang@cs.vu.nl
mailto:huang@cs.vu.nl
mailto:mzhu@seu.edu.cn
http://dx.doi.org/10.1016/j.knosys.2014.07.023
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys


In such cases, without a system’s support, it is very difficult or even
infeasible to comprehend why an entailment holds.

So far, many ontology debugging algorithms have been pro-
posed. They generally can be classified into two categories: a
glass-box approach which modifies the reasoning algorithm of an
OWL reasoner [73] and a black-box approach which treats the rea-
soner as a ‘‘black-box’’ or an ‘‘oracle’’ [51]. Through implementing
different ontology debugging algorithms, various ontology debug-
ging systems such as DION2 and RaDON3 have been developed. To
see the advantages and disadvantages of existing ontology debug-
ging systems, the work in [78] conducts an evaluation of five repre-
sentative ontology debugging systems over a few incoherent
ontologies.4 In [33], a more extensive investigation is carried out
to evaluate a black-box algorithm for finding all justifications over
a collection of ontologies. A recent survey in [87] compares existing
ontology debugging algorithms for finding all justifications.

Although there has been some work on evaluating existing
ontology debugging systems, the efficiency is their main evaluation
measure. However, these systems may fail to find all justifications
for an entailment within a time limit and even return incorrect jus-
tifications. Therefore, measuring their effectiveness by considering
the correctness of justifications and completeness of a set of found
justifications5 is helpful. It is well known that measuring the effec-
tiveness of an information retrieval system has been extensively
studied, where the effectiveness is used to determine the relevance
of documents retrieved by a search engine [70]. Two typical measures
of effectiveness in information retrieval are precision and recall [8,57]
which are commonly used and well understood. The precision is the
fraction of retrieved documents that are relevant and the recall is the
fraction of relevant documents that have been retrieved. To measure
the effectiveness of an ontology debugging system, we define two
measures, i.e., the degree of correctness and the degree of complete-
ness, which correspond to precision and recall respectively.

In this paper, we evaluate both effectiveness and efficiency of
existing ontology debugging systems based on a large collection of
diverse ontologies. To assess the effectiveness, we first propose a
method to construct the reference justification sets and define the
degrees of correctness and completeness of the system. Then we
construct a dataset containing 80 ontologies which are not ‘‘cherry
picked’’ for various ontology debugging tasks and vary greatly in size
and expressivity. These ontologies contain a much wider range of
the numbers of justifications than those provided in existing evalu-
ation work. Based on the proposed evaluation measures and the con-
structed dataset, we do comprehensive experiments. The evaluation
results reveal that a number of justifications found by three selected
systems are incorrect, and three systems that implement an algo-
rithm satisfying the completeness cannot always find all justifica-
tions when there is no timeout or ‘‘out of memory’’ error. Our
evaluation results also show that, although existing ontology debug-
ging systems have achieved good performance w.r.t. efficiency,
there still exists some space for improvement.

In summary, our paper contains the following contributions:

(1) We define evaluation measures to assess the effectiveness of
ontology debugging systems by adapting the notions of pre-
cision and recall.

(2) We construct a dataset for various ontology debugging tasks.
First, we carefully select some representative existing
ontologies. Second, we construct some new ontologies for

different evaluation purposes, such as evaluating merged
ontologies and testing the scalability of existing ontology
debugging systems.

(3) We conduct an extensive empirical evaluation of existing
ontology debugging systems to evaluate their effectiveness
and efficiency. To the best of our knowledge, this is the first
work that comprehensively evaluates the effectiveness of
ontology debugging systems.

(4) Our evaluation facilitates users to choose an appropriate
ontology debugging system and developers to design an
ontology debugging algorithm and build a system.

The rest of this paper is organized as follows. We present the
background knowledge in Section 2. In Section 3, we describe the
ontology debugging systems to be evaluated. We then give the
evaluation measures and dataset in Section 4 and Section 5 respec-
tively. After that, the evaluation process is introduced in Section 6
and the experimental results are given in Section 7. Based on the
results, we provide suggestions to users and developers of ontology
debugging systems in Section 8. Finally, we discuss related work in
Section 9 and conclude this paper in Section 10.

2. Background knowledge

In this section, we first give the basics of description logics and
ontology mapping. We then introduce the key notions used for
debugging ontologies. Finally, we give a brief survey of existing
ontology debugging approaches.

2.1. Description logics

It is known that the highly expressive DL SHOIN [36] under-
pins OWL [58] and the more expressive DL SROIQ [35] underpins
OWL 2 [27]. As most of ontology debugging systems to be evalu-
ated can deal with OWL 2 ontologies, we give a brief introduction
of DL SROIQ.

2.1.1. Description logic syntax
In DLs, there are three kinds of entities: concepts representing

sets of individuals, roles representing binary relations between
the individuals and individual names representing single individu-
als in the domain. The SROIQ-roles and SROIQ-concepts can be
built upon atomic concepts (A), atomic roles RA, top concept >,
bottom concept ?, named individuals (oi), simple roles (S) and uni-
versal role U by using different constructors shown in Table 1. A
DL-based ontology O ¼ ðT ;AÞ consists of a finite set T (TBox) of
terminology axioms and a set A (ABox) of individual axioms. A
TBox may include concept inclusion axioms, role inclusion axioms,
transitive role axioms, disjoint role axioms, reflexive role axioms,
irreflexive role axioms, symmetric role axioms and asymmetric
role axioms. An ABox may include concept assertions, role asser-
tions, negated role assertions, inequality assertions and equality
assertions (see Table 1). Note that SROIQðDÞ is obtained through
extending SROIQ with datatypes, which are entities that refer to
sets of data values such as strings and numbers. So far, the roles
mentioned in Table 1 are abstract roles whose domain and range
are concepts. If the range of a role is datatype literal, this role is
called datatype role [36]. The concepts, abstract roles and datatype
roles in DLs correspond to the classes, object properties and data
properties in OWL respectively.

2.1.2. Description logic semantics
The semantics of SROIQ is defined by an interpretation

I ¼ ðDI ; :I Þ consisting of a non-empty domain DI and an interpre-
tation function :I . The function :I interprets concepts, roles and

2 http://wasp.cs.vu.nl/sekt/dion/.
3 http://atur.aturstudio.com/homepage/qiuji/radon.htm.
4 An ontology is incoherent if it contains at least one unsatisfiable concept.
5 A justification for an entailment is correct if it is a minimal axiom set to infer the

entailment. A set of justifications for an entailment is complete if all justifications of
the entailment are included in the set.

170 Q. Ji et al. / Knowledge-Based Systems 71 (2014) 169–186

http://wasp.cs.vu.nl/sekt/dion/
http://atur.aturstudio.com/homepage/qiuji/radon.htm


Download English Version:

https://daneshyari.com/en/article/403602

Download Persian Version:

https://daneshyari.com/article/403602

Daneshyari.com

https://daneshyari.com/en/article/403602
https://daneshyari.com/article/403602
https://daneshyari.com

