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a b s t r a c t

In this paper, we propose a robust scheme for least squares support vector regression (LS-SVR), termed as
RLS-SVR, which employs non-convex least squares loss function to overcome the limitation of LS-SVR
that it is sensitive to outliers. Non-convex loss gives a constant penalty for any large outliers. The pro-
posed loss function can be expressed by a difference of convex functions (DC). The resultant optimization
is a DC program. It can be solved by utilizing the Concave–Convex Procedure (CCCP). RLS-SVR iteratively
builds the regression function by solving a set of linear equations at one time. The proposed RLS-SVR
includes the classical LS-SVR as its special case. Numerical experiments on both artificial datasets and
benchmark datasets confirm the promising results of the proposed algorithm.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Support vector machine (SVM), introduced by Vapnik and col-
leagues [1–3], has been a powerful machine learning technique for
classification and regression estimation. It is based on the Vapnik–
Chervonenkis (VC) dimensional theory and statistical learning the-
ory. The central idea of SVM is to construct two parallel hyperplanes
that separate the two classes with maximum margin. Over the past
few decades, many efficient learning algorithms and models to SVM
have emerged. Most of the above algorithms or models determine
two parallel hyperplanes. Recently, some non-parallel hyperplane
classifiers have been proposed, named twin SVMs [4–7]. Twin
SVM generates two nonparallel hyperplanes by two smaller and
related SVM-type problems, in which each hyperplane is closer to
one class and as far as possible from the other. SVMs have been suc-
cessfully used in many fields including pattern recognition [8], text
categorization [9], time series prediction [10–12].

As for the regression estimation problem, one is given the train-
ing samples of input vectors fxign

i¼1 along with the corresponding
targets fyig

n
i¼1, and the task is to find a regression function that best

represents the relation between input vectors and their targets. A
nonlinear regressor makes predictions by f ðxÞ ¼ w>/ðxÞ þ b, where
/ð�Þ is a mapping which maps the input data into a high-dimen-
sional feature space, w represents the model complexity, and b is
the bias. The weight vector w and the bias b are determined by

minimizing the regularized risk function Remp½f � þ kjjwjj2, where
Remp½f � is the empirical risk of a specific loss function and k > 0 is
the regularization parameter. A successful method for regression
estimation is least squares support vector regression (LS-SVR)
introduced in [13,14], which tries to minimize the least squares
errors on the training samples while simultaneously escaping from
overfitting. LS-SVR is different from the classical SVR which solves
a quadratic programming problem (QPP). LS-SVR replaces the QPP
in SVR with a set of linear equations by using a squared loss func-
tion and leads to an extremely fast training speed.

In real applications, the samples obtained may be subject to
outliers. Outliers occur for various reasons, such as erroneous sam-
plings and measurements or noisy samples with the heavy-tailed
noise distribution. Traditionally, although LS-SVR obtains fast
training speed and comparable generalization, it still exits one
obvious limitation that its solution suffers from lack of robustness.
In LS-SVR, the squared errors result in bad robustness. LS-SVR is
only optimal if the error variables follow a Gaussian distribution
because it attempts to minimize the sum of squared error loss of
these samples.

To improve the robustness of LS-SVR, many researchers have
made much effort in recent years. The commonly used approach
adopts the weight setting strategies to reduce the influence of out-
liers. Since the training samples that include outliers are aggre-
gately regarded in the training process, it is important to
consider the concept of robust statistic. For this reason, Suykens
et al. proposed a weighted LS-SVR in which different weighting
factors are put on the error variables, such that the less important
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samples or outliers have small weights [14]. Another alternative
calculation rule of weights was that the samples which had large
distances from other samples should be assigned smaller weights
to reduce their impact [15,16]. In [17], the authors compared four
different types of weighting function, including Huber, Hampel,
Logistic and Myriad, and gained the conclusion that Logistic and
Myriad weighting functions owned better robustness over the
other two functions in most cases. In essence, the weighted
LS-SVR [14] is an LS-SVR with Hampel weighting function [17].
However, whether these weighting strategies are the optimal
choice with respect to dataset is unclear. Another kind of methods
enhances LS-SVR by outlier elimination [18,19].

Recently, various works focused on non-convex loss functions
have been proposed as they have shown superiority to convex ones
in generalization performance and robustness [20–26]. Xu et al. [20]
studied training algorithms for SVMs with the ramp loss and solved
the non-convex optimization by utilizing semidefinite program and
convex relaxation techniques. Wu and Liu [23] proposed a robust
SVM with truncated hinge loss, which was illustrated to be more
robust to outliers and derived more accuracy classifiers. Collobert
et al. [21,22] pointed out the scalability advantages of non-convex
approaches and used the CCCP [29] for non-convex optimization
to achieve faster batch SVMs and Transductive SVMs. Motivated
by the recent interest in solving SVM in the primal [27,28], Wang
et al. [24] gave robust support vector machine with smooth ramp
loss in the primal. Zhao and Sun [25] extended the similar idea to
regression estimation. Zhong [26] presented a smooth non-convex
loss function for robust SVR. These works only focus on the classical
support vector classification or regression, whereas there are few
papers focus on the least squares version of SVR.

Motivated by the aforementioned studies, in this paper, we pro-
pose a non-convex least squares loss function by setting constant
penalty for any large outliers to reduce the danger from these sam-
ples, and derive a robust LS-SVR model (RLS-SVR). Due to the fact
that the proposed loss function is not convex, the classical optimi-
zation method cannot be employed directly to solve the RLS-SVR.
First, we decompose the non-convex loss function into a difference
of convex functions. The resultant optimization problem is a DC
program [30,31]. Second, the CCCP is used to transform the DC pro-
gram into a sequences of convex optimization problem. RLS-SVR
iteratively builds the regression function by solving a set of linear
equations at one time. Numerical experiments on both artificial
datasets and benchmark datasets reveal the efficiency of the
proposed method.

The rest of this paper is organized as follows. In Section 2,
we present a background on LS-SVR. Section 3 formulates a
robust scheme for LS-SVR with non-convex loss. We propose a
non-convex least squares loss function and derive RLS-SVR, and
give an iterative algorithm for the proposed RLS-SVR. Section 4
performs experiments on artificial datasets and benchmark data-
sets to investigate the effectiveness of the RLS-SVR. The last section
concludes the paper.

2. LS-SVR

In this section, we concisely present the basic principles of
LS-SVR. For more detail, the reader can refer to [13,14]. To derive
a nonlinear regressor, LS-SVR solves the following optimization
problem:

min
w;b;ei

1
2
kwk2 þ C

2

Xn

i¼1

e2
i ð1Þ

s:t: yi ¼ w>/ðxiÞ þ bþ ei; i ¼ 1; . . . ;n ð2Þ

where ei represents the error variables, and C > 0 is the regulariza-
tion parameter that balances the model complexity and empirical

risk. We introduce Lagrangian multipliers and construct a Lagrang-
ian function to solve the optimization problem (1) and (2). Utilizing
the Karush–Kuhn–Tucker (KKT) conditions, the dual problem can be
obtained as:

0 1>
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C In

" #
b
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ð3Þ

where 1 ¼ ð1;1; . . . ;1Þ>, y ¼ ðy1; y2; . . . ; ynÞ
>
; In denotes n� n

identity matrix, K ¼ ðKijÞn�n is the kernel matrix with

Kij ¼ kðxi; xjÞ ¼ /ðxiÞ>/ðxjÞ, and kð�; �Þ is the kernel function which
can be expressed as the inner product calculation in high dimen-
sional feature space. For a new sample x, we can predict its target by

f ðxÞ ¼ w>/ðxÞ þ b ¼
Xn

i¼1

aikðxi;xÞ þ b ð4Þ

where a and b are the solutions of (3).

3. Robust least squares support vector regression (RLS-SVR)

3.1. Non-convex least squares loss function

The optimization problem of LS-SVR (1) and (2) can be rewrit-
ten as a unconstrained regularized model:

min
w;b

1
2
kwk2 þ C

2

Xn

i¼1

l1ðyi � f ðxiÞÞ ð5Þ

where

l1ðrÞ ¼ r2 ð6Þ

is squared loss function, and
Pn

i¼1l1ðyi � f ðxiÞÞ expresses the empir-
ical risk.

As mentioned, LS-SVR is sensitive to outliers and noises with
the l1ðrÞ ¼ r2. When there exist outliers which are markedly far
away from the rest of samples, large errors will dominate the
sum of squared error and the decision hyperplane of LS-SVR will
severely deviate from the original position and thus deteriorate
the generalization performance of LS-SVR. By setting a constant
penalty h2 for any large outlier, we propose a non-convex least
squares loss function (see Fig. 1):

lhðrÞ ¼
r2; if jrj 6 h

h2; if jrj > h

(
ð7Þ
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Fig. 1. Non-convex least squares loss function lhðrÞ with h ¼ 1:2, squared loss
function l1ðrÞ and l2ðrÞ.
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