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Kernel Ridge Regression (KRR) is a powerful nonlinear regression method. The combination of KRR and
the truncated-regularized Newton method, which is based on the conjugate gradient (CG) method, leads
to a powerful regression method. The proposed method (algorithm), is called Truncated-Regularized Ker-
nel Ridge Regression (TR-KRR). Compared to the closed-form solution of KRR, Support Vector Machines
(SVM) and Least-Squares Support Vector Machines (LS-SVM) algorithms on six data sets, the proposed
TR-KRR algorithm is as accurate as, and much faster than all of the other algorithms.
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1. Introduction

Regression and classification are fundamental machine learning
techniques to find patterns in data. Predictive tasks whose out-
comes are quantitative (real numbers) are called regression, and
tasks whose outcomes are qualitative (binary, categorical, or dis-
crete) are called classification. The most fundamental method to
address regression problems is the least squares (LS) method, while
logistic regression (LR) is the fundamental method for classification.
Some disadvantages of the LS method (over-fitting and multicollin-
earity) are addressed through the development of the method of
ridge regression (RR) [1], which is based on the LS method. Kernel
methods are some of the most successful for machine learning in
recent years. One of the their advantages is extending linear algo-
rithms to non-linear problems by the implementation of the ker-
nel. Support vector machines (SVM), developed originally by
Vapnik [2], is considered a state-of-the-art algorithm for both clas-
sification (SVC) and regression (SVR) [3] through its implementa-
tion of kernels. Least squares support vector machines (LS-SVM),
developed by Suykens and Vanderwalle [4], is extended to solve
regression problems. The LS-SVM method is easier to train and it
converts the inequality constraints of SVM into equality con-
straints [5]. Kernel ridge regression (KRR) [6] extends the RR method
to non-linear problems and is now an established data mining tool

[7].
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Each one of aforementioned methods has a limitation. LS linear-
ity may be an obstacle to handling highly nonlinear small-to-med-
ium size data sets [8]. The SVM method requires solving a
constrained quadratic optimization problem with a time complex-
ity of O(N*) where N is the number of training instances. The KRR
method, in the form of ridge regression, is not sparse and requires
all of the training instances in its model [8]. Like SVM, KRR has a
time complexity of O(N?). Its computation can be slow due to the
density of its matrices [8,5].

Komarek and Moore [9] are the first to show that the truncated-
regularized iteratively re-weighted least squares (TR-IRLS) algorithm
can be effectively implemented on LR to classify large and high
dimensional data sets, and that it can outperform the support vec-
tor machine (SVM) algorithm. The TR-IRLS algorithm is based on
the linear CG method, as described by Komarek [9]. Maalouf and
Siddiqi [10] apply the LR truncated Newton method to large-scale
imbalanced and rare events data using the rare events weighted
logistic regression (RE-WLR) algorithm. Maalouf et al. [11] show
the effectiveness of the linear CG in solving the kernel logistic
regression (KLR) model through the truncated regularized kernel
logistic regression (TR-KLR) algorithm. Furthermore, Maalouf and
Trafalis [12] extended the TR-KLR model to imbalanced data
through the rare-event weighted kernel logistic regression (RE-
WKLR) algorithm. To the authors’ knowledge, truncated Newton
methods have not been fully utilized to solve KRR problems. A pos-
sible reason could be the notion that the stability of the CG method
is not guaranteed when the data matrix is dense [8,13].

Our motivation for this study is based on the success and
effectiveness of truncated Newton methods when applied to KLR
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classification problems [11,12]. In this study we combine the speed
of the truncated Newton techniques with the accuracy generated
by the use of kernels for solving nonlinear KRR problems. As with
our TR-KLR classification method, our proposed regression method,
the TR-KRR algorithm, is easy to implement and requires solving
only an unconstrained regularized optimization problem, thus pro-
viding a computationally more efficient alternative algorithm to
SVM. The combination of regularization, approximate numerical
methods, kernelization and efficient implementation are essential
to enabling TR-KRR to be at once an effective and powerful regres-
sion method. We test the performance of TR-KRR on six data sets,
one of which is simulated and the rest are real-life data sets. In as
much as the use of truncated Newton methods has not been fully
exploited in solving KRR models, it is our intention to provide fur-
ther contribution.

In Section 2, we provide a brief description of the LS method. In
Section 3, we derive the RR model. Sections 4 and 5 discuss the KRR
model and the TR-KRR algorithm, respectively. Numerical results
are presented in Section 6 and Section 7 states the conclusion.

2. Least squares method

Let X in RV*? be a data matrix where N is the number of training
instances (examples) and d is the number of features (parameters
or attributes), and y be a real-valued outcome vector. Let the set of
training data be {(X;,¥,),..., (Xx,yy)}, Where each x; in R? (a row
vector in X) denotes a sample (instance) in the input space with
a corresponding output y; in R, for i = 1,2,...N. The goal is to find
a functional approximation, f(x), for inputs outside of the training
sample but hypothetically follow the same probability distribution
function as the sample points. Mathematically,

f) = (B.X)+ o (B,x€R, (1)

where B is the weight vector of the regression hyperplane and g, is
the threshold with respect to the origin. The method of least squares
(LS) is a well-known method of estimation [14,15]. The general lin-
ear model in matrix form is

y=Xp+e 2)

where € = (€1, €,.. ., eN)T in R is the error vector, with the assump-
tions that the errors have a constant variance, and are linearly inde-
pendent and normally distributed. The vector g is the vector of
unknown parameters such that x; — [1,x;] and g — [, ]. From
now on, the assumption is that the intercept is included in the vec-
tor B. The LS method then estimates g by minimizing the sum of
squared residuals (RSS),

l
RSS=> "€t = €'e=(y—Xp)'(y — XB). 3)
i-1
This sum is often called the objective function. The same objective
function can be also obtained by taking the natural log of probabil-
ity distribution function of errors, in close similarity to the maxi-
mum likelihood approach. The solution, after obtaining the
gradient vector and the Hessian matrix, and given the matrix
(X"X) is non-singular, is

B=X"X)"'Xy. (4)

3. Ridge regression
3.1. Ridge regression in the primal

One of the drawbacks of the method of least-squares is poor
estimation of the regression coefficients, which could make the

absolute values of the least-squares estimates too large and unsta-
ble [16]. Ridge regression "shrinks” the least-squares coefficients
through the addition of a regularization parameter, thus minimiz-
ing the following objective function [17]:

FB) =y~ XB(y -~ Xp) + 5478, 5)

where / > 0 is the regularization parameter, and it is usually user-
defined. The parameter A is important in determining the bias-var-
iance trade-off of an estimator [18,19]. When / is very small, there
is less bias but more variance. Larger values of /, however, lead to
more bias but less variance [20]. Therefore, the inclusion of regular-
ization in the ridge regression model is very important to reduce
any potential inefficiency. Furthermore, the addition of the regular-
ization parameter makes the problem nonsingular, even if X"X is
not in full rank [17].

The gradient is obtained by differentiating the objective func-
tion in (5) with respect to g, which vanishes by applying the first
order condition Vf(B) = 0, yielding

p= XX+ 1) Xy, (6)

where I, is a d x d identity matrix.
3.2. Ridge regression in the dual

Let o be a dual variable such that g can be a linear combination
of the data points, then

p=X'a, (7)
making the general linear model be
y=XX"0+ € = Go + €, (8)

where G = XX" is a symmetric Grammian matrix. The objective
function in (5) can be minimized with respect to o by invoking
(7), such that

£(0) = 5 (v~ G'(y ~ Got) + oG )
Applying the first order condition Vf(«) = 0 gives the dual solution

a=(G+Iy)y, (10)

where Iy is now an N x N identity matrix.

4. Kernel Ridge Regression (KRR)

The linear transformation in (7) can be replaced with a more
general non-linear mapping function, ¢(-), which maps the data
from a lower dimensional space into a higher one, such that

d:XxeR = $p(X) e FCRM (11)

The goal for choosing the mapping ¢ is to convert nonlinear rela-
tions between the response variable and the independent variables
into linear relations. Usually, the transformations ¢(.) are often
unknown. However, the solution to the regression problem depends
only on the dot product in the feature space, as in the formulation of
the dual problem in (8). The dot product can be expressed in terms
of the input vectors through the kernel function.

Now, to avoid the curse of dimensionality of the nonlinear
transformation, a kernel function in the form of the dot product,
K = K(X;,X;) = (¢(Xi), ¢(X;)), which measures the similarity
between two vectors is introduced. This kernel is a transformation
function that must satisfy Mercer’s condition [21]. The importance
of the kernel lies in identifying nonlinear functional relations
between one selected variable and the remaining features [22].
The kernel function maps the input vectors to a higher dimensional
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