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a b s t r a c t

Robust classification models based on the ensemble methodology are proposed in the paper. The main
feature of the models is that the precise vector of weights assigned for examples in the training set at
each iteration of boosting is replaced by a local convex set of weight vectors. The minimax strategy is
used for building weak classifiers at each iteration. The local sets of weights are constructed by means
of imprecise statistical models. The proposed models are called RILBoost (Robust Imprecise Local Boost).
Numerical experiments with real data show that the proposed models outperform the standard AdaBoost
algorithm for several well-known data sets.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The classification problem can be formally written as follows.
Given n training data (examples, instances, patterns) S
¼ fðx1; y1Þ; ðx2; y2Þ; . . . ; ðxn; ynÞg, in which xi 2 Rm represents a fea-
ture vector involving m features and yi 2 f0;1; . . . ; k� 1g indices
the class of the associated examples, the task of classification is
to construct an accurate classifier c : Rm ! f0;1; . . . ; k� 1g that
maximizes the probability that cðxÞ ¼ yi for i ¼ 1; . . . ;n. Generally
xi may belong to an arbitrary set X, but we consider the special
case for simplicity X ¼ Rm. Moreover, we assume that k ¼ 2 and
yi 2 f�1;1g. The main problem of classification is to find a
real valued function f ðx;w; bÞ having parameters w and b such
that w ¼ ðw1; . . . ;wmÞ 2 Rm and b 2 R, for example, f ðx;w; bÞ ¼
w;xh i þ b. Here w;xh i denotes the dot product of two vectors w

and x. The sign of the function determines the class label
prediction or cðxÞ.

A classification problem is usually characterized by an unknown
probability distribution pðx; yÞ on Rn � f�1;þ1g defined by the
training set or examples xi and their corresponding class labels
yi. Many classification models accept the uniform distribution
pðx; yÞ which means that every example in the training set has
the probability 1=n. In particular, the empirical risk functional [1]

and the well known support vector machine (SVM) method [2–4]
exploit this assumption. We will denote the probabilities of exam-
ples h ¼ ðh1; . . . ;hnÞ.

At the same time, many weighted classification models violate
this assumption by assigning unequal weights to examples in the
training set in accordance with some available additional informa-
tion. These weights can be regarded as a probability distribution.
Of course, the equal weights as well as the arbitrary weights can
be viewed as a measure of importance of every example. Many
authors adhere to this interpretation of weights. It should be noted
however that both the interpretations do not formally contradict
one another.

One of the very popular approaches to classification is the
ensemble methodology. The basic idea of classifier ensemble learn-
ing is to construct multiple classifiers from the original data and
then aggregate their predictions when classifying unknown sam-
ples. It is carried out by means of weighing several weak or base
classifiers and by combining them in order to obtain a classifier
that outperforms every one of them. The improvement in perfor-
mance arising from ensemble combinations is usually the result
of a reduction in variance of the classification error [5]. This occurs
because the usual effect of ensemble averaging is to reduce the var-
iance of a set of classifiers.

There are many books and review works devoted to the ensem-
ble methodology and the corresponding algorithms due to the pop-
ularity of the approach. One of the first books studying how to
combine several classifiers together in order to achieve improved
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recognition performance was written by Kuncheva [6]. The book
explains and analyzes different approaches to ensemble methodol-
ogy comparatively. A comprehensive and exhaustive recent review
of the ensemble-based methods and approaches can be found in
the work of Rokach [7]. This review provides a detailed analysis
of the ensemble-based methodology and various combination
rules for combining weak classifiers. Another very interesting
and detailed review is given by Ferreira and Figueiredo [8]. The
authors of the review cover a wide range of boosting algorithms re-
cently available. This is the only review where the authors attempt
to briefly consider and compare a huge number of modifications of
boosting algorithms. Re and Valentini [9] proposed a qualitative
comparison and analysis of the ensemble methods and their appli-
cability to astronomy and astrophysics.

The most well known ensemble-based technique is boosting.
Boosting is a method for improving the performance of weak classi-
fiers which are combined into a single composite strong classifier in
order to achieve a higher accuracy. One of the most popular boost-
ing methods is AdaBoost (Adaptive Boosting) proposed by Freund
and Schapire [10]. AdaBoost is a general purpose boosting algorithm
that can be used in conjunction with many other learning algo-
rithms to improve their performance via an iterative process.

As pointed out by Rokach [7], AdaBoost improves the perfor-
mance accuracy for two main reasons:

1. It generates a final classifier whose misclassification rate can be
reduced by combining many classifiers whose misclassification
rate may be high.

2. It produces a combined classifier whose variance is significantly
lower than the variances produced by the weak base learners.

AdaBoost has many advantages. One of them is that the algo-
rithm is adaptive, i.e., it is able to take advantage of weak hypoth-
eses that are more accurate than it was assumed a priori.
Adaptation is carried out by changing the weights of all misclassi-
fied and correctly classified examples in accordance with some
rule. In fact, the uniform probability distribution (equal wights as-
signed to all examples) is replaced by another probability distribu-
tion in each iteration of the algorithm in order to improve the
performance accuracy in the next iteration. The weights of exam-
ples in boosting methods can be regarded as a discrete probability
distribution (probability mass function) over a training set. The
algorithm searches for a suitable probability distribution starting
from the uniform distribution. On the one hand, the adaptation
may lead to overfitting in the high-noise regime by assigning too
much weights onto a few hard-to-learn examples. This is one of
the bottlenecks of AdaBoost and similar ensemble-based classifica-
tion algorithms.

Many modifications of AdaBoost have been proposed to over-
come the problem of overfitting. A very popular technique to pre-
vent overfitting is to stop boosting algorithms after a small number
of iterations. There are a lot of papers illustrating the successful
early stopping rules, for example, [11–13]. At the same time, Mease
and Wyner [11] show by means of simple and visual examples that
the early stopping rule may lead to incorrect classification results.

Another interesting approach to overcome overfitting is to re-
strict the set of possible weights of examples in training data or
their probability distributions according to a certain rule. The
restriction can be carried out by means of various ways, for exam-
ple, by introducing an upper bound for the weights, by generating
only smooth distributions, etc. (see [14–16]). There exist other ap-
proaches to the problem of overfitting, see, for example, [17–21].
They can be viewed as a very small part of many algorithms devel-
oped in order to avoid overfitting for noisy data.

A quite different algorithm is proposed in this paper in order to
overcome some difficulties of the AdaBoost including the problem

of avoiding overfitting. The main idea of the algorithm is to assign
to examples not a probability distribution, but a set of probability
distributions in each iteration. If we imagine the simplex of all pos-
sible weights (probability distributions), then a point within the
simplex which is used in the standard AdaBoost in each iteration
as a weight vector is transformed to a set of distributions, i.e., we
get some polyhedron around the point. So, every iteration has a
separate polyhedron constructed in accordance with some rule,
namely, by using the so-called imprecise statistical models [22],
in particular, an extension of the well-known e-contaminated (ro-
bust) model [23].

Let us consider by means of a simple example how the weights
are changed after every iteration of the AdaBoost algorithm. Sup-
pose we have a training set consisting of three examples. This im-
plies that we have probability distribution h ¼ ðh1;h2;h3Þ in each
iteration of the boosting such that h belongs to the unit simplex.
Starting from the point ð1=3;1=3;1=3Þ, the probability distribution
moves within the unit simplex. This is schematically shown in
Fig. 1. Since the probabilities tend to concentrate on ‘‘hard’’ exam-
ples [10], we could suppose that one of the possible points to
which the probability distribution moves is an extreme (corner)
point of the simplex depicted in Fig. 1. Indeed, we assign the
weight 1 to a ‘‘hard’’ example and weight 0 to other examples.
The idea of the proposed model is to replace distribution points
by small simplexes which are schematically depicted in Fig. 2.
We will return to the pictures when we consider the formal state-
ment of the classification problem.

It is supposed that every distribution within the polyhedron or
the simplex can be used as a weight vector for classification. How-
ever, we select a single distribution according to the minimax
strategy. In order to solve the classification problem under the
set of probability distributions we select the ‘‘worst’’ distribution
providing the largest value of the expected risk. It corresponds to
the minimax (pessimistic) strategy in decision making and can
be interpreted as an insurance against the worst case [24]. The
minimax strategy makes the classification problem to be robust.

It should be noted that the proposed algorithm may be efficient
when there are available only small training samples. It was
pointed out by Hertz et al. [25] that classification on the basis of
small training samples is an important problem. The authors of
[25] indicated that the successful generalization from a very small
number of training data often requires the use of additional avail-
able information. As a result, they proposed a boosting algorithm
which can learn from very small samples. The authors used 10%

Fig. 1. The unit simplex of probabilities of examples in each iterations for the
AdaBoost.
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