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Abstract

In this paper, we investigate the decoding of flashed, full-field visual stimuli while recording from a population of retinal ganglion
cells. We present a direct statistical method for determining the likelihood that a response was evoked by a particular stimulus, and
use this method to estimate stimuli based on microelectrode array recordings in the turtle retina. This method uses the well-known
time-varying Poisson model of neural firing, along with extensions to accommodate neural refractory periods. Unlike other approaches
commonly used for Poisson processes, the specific formulation presented here is bin free and requires few user-specified parameters. Sta-
tistical dependency issues and the effects of stationarity on the estimation method are also discussed.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The entire visual experience of vertebrates is conveyed in
the spatiotemporal patterns of action potentials that are
output from their retinal ganglion cells. Early research into
retinal encoding determined that ganglion cells can be
placed into broad response classes (Granda & Fulbrook,
1989; Hartline, 1938) and that they had relatively localized,
structured receptive fields (Kuffler, 1953). However, the
responses of individual ganglion cells can exhibit significant
variability to identical sets of visual stimuli and similar
responses for very different stimuli (Reich, Victor, Knight,
Ozaki, & Kaplan, 1997). These responses can also include
stochastic variations due to the inherent noise in photo-
transduction and neural transmission processes, especially
at near threshold levels. Because of these variabilities and
ambiguities, it is generally recognized that populations of
ganglion cells are required to reliably encode the visual
scene. Nevertheless, the specifics of how these cells work

together and how their firing patterns can best be interpret-
ed are still the subject of much investigation. The explora-
tion of methods for estimating stimuli based on the neural
response is one approach to understanding these processes.

Neural responses to discrete stimuli are commonly ana-
lyzed with Peri-Stimulus Time Histograms (PSTHs). These
plots average out the per-trial variability and provide the
prototypical responses for a particular stimulus. Based on
observed differences in the responses, one can create a vari-
ety of bin counting and vector representations that allow
the stimuli to be determined from the neural response
(Awiszus, 1997; Becker & Kruger, 1996; Gawne & Rich-
mond, 1993; Geisler & Albrecht, 1997; Oram, Foldiak, Per-
rett, & Sengpiel, 1998; Salinas & Abbott, 1994). Ideally,
however, a method is desired for directly evaluating the
likelihood that the spikes from a single trial came from a
certain prototypical response without ad hoc vector repre-
sentations (Sanger, 2002).

Statistical methods for point processes can provide
insight and a mathematical framework for studying this
class of problems (Brown, Barbieri, Eden, & Frank, 2003;
Johnson, 1996; Kass & Ventura, 2001; Perkel, Gerstein,
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& Moore, 1967). They provide a language for describing
both the distribution of possible responses to stimuli and
the likelihoods of different stimuli given an observed neural
firing pattern. In this paper, we present a method for esti-
mating the most likely stimuli among discrete sets on the
basis of the neural response, and we apply this method to
the responses of turtle retina ganglion cells. For the for-
ward encoding model of the time-varying spike response,
this method uses the well-known inhomogeneous Poisson
process combined with a refractory renewal period follow-
ing each spike. This combined model has also been called
the Inhomogeneous Markov Interval or IMI process by
Kass and Ventura (2001). Unlike most Poisson estimation
methods used for neural signal decoding (Rieke, Warland,
de Ruyter van Steveninck, & Bialek, 1997), the presented
method is essentially bin-free and can include neural refrac-
tory periods in the estimation. Using this approach, we
show that a discrete set of eight color stimuli can be decod-
ed with an accuracy of 78% with recordings from a popu-
lation of 18 cells. Performances from simulated cell
populations constructed from the data are also presented.

When stochastic estimation methods are applied to a
neural system, the statistical dependencies between cells
and the stationarity of the responses over time must be
determined (Johnson, 1996). Several researchers have pro-
posed the existence of higher-order or synchrony codes that
could be used among groups of cells in a variety of cortical
and sensory neural systems (Abeles, 1991; Softky, 1995),
including the retina (Meister, Lagnado, & Baylor, 1995).
In this study, we used the normalized Joint PSTH (Aertsen,
Gerstein, Habib, & Palm, 1989) to examine the correlation
structure of the responses. This analysis found no signifi-
cant correlations, and the cells were therefore treated as
statistically independent coders of information for the esti-
mation analysis. However, generalizations of the estima-
tion method for correlated spike trains are discussed. In
this study, we also examine the impact of the stationarity
of the recorded responses on the model building and esti-
mation performance.

2. Methods

2.1. Preparation

Recordings were made from ganglion cells in isolated turtle (pseudemys

scripta elegans) retinas with isolation performed as described by Perlman,
Normann, Chandler, and Lipetz (1990). In these experiments, a 100-elec-
trode extracellular array with 1.5 mm electrodes in a 10 · 10 grid with
400 lm inter-electrode spacing was used. The retina was placed on a glass
slide (photoreceptor side down), held in place by a millipore filter border,
and superfused with an oxygenated (95% O2, 5% CO2) buffer solution
(110 mM NaCl, 2.6 mM KCl, 2.0 mM CaCl2, 2.0 mM MgCl2, 22 mM
NaHCO3, and 10 mM D-glucose) delivered at 0.5 ml/min. Light stimuli
were provided by a Hitachi Superscan Pro 620 monitor with a vertical
refresh rate of 100 Hz and stimulus updates were performed between
refreshes. The monitor image was focused by a 55 mm camera lens
(f2.8) and prism system to produce a 6 · 6 mm image on the photoreceptor
layer of the retina. Once the retina was in place, the electrode array was
lowered into the ganglion cell layer of the retina until single unit activity
became apparent. The data acquisition system allowed simultaneous

online extraction of the spike timing and waveforms from all 100 elec-
trodes in the array (Guillory & Normann, 1999). Multi-unit recordings
were obtained and the single unit waveforms were classified offline using
MATLAB implementations of the clustering algorithm described by Sho-
ham, Fellows, and Normann (2003).

While unit activity was recorded, full-field light stimuli were presented
in trials consisting of a 200 ms ON period followed by a 300 ms OFF peri-
od before the next trial. The light stimuli were randomly selected from an
equally probable discrete set of eight stimuli composed of 100:1 contrast,
ON–OFF binary combinations of the red, green, and blue channels of the
monitor (ON intensities of 1.4, 2.0, and 1.5 mW/m2, respectively). These
intensities and color variations were selected as a simple stimulus set that
could be differentiated by the pentachromatic visual system of the turtle.
These color combinations appear to the humans as black (no stimulus),
red, green, blue, cyan, magenta, yellow, and white. Data were collected
from three retinas with a total of 16,000 stimulus presentation trials per
retina. For the cells recorded and analyzed in this study, PSTHs were con-
structed for each stimulus color in the data set. Raster plots of the spikes
across all trials and separate PSTH plots for the first and second halves of
the data sets were generated and visually compared to provide an empir-
ical index of response stationarity (Awiszus, 1997).

2.2. Estimation method

To perform statistical estimation, a forward model for neural encoding
must be selected, and the model employed here begins with the non-ho-
mogenous Poisson process. This is the simplest model with the fewest
assumptions for capturing a time-varying likelihood of event generation,
and it uses a stochastic rate function k (t) as its only parameter. In this
method, the rate function for each cell and stimulus was estimated by
applying a unit-area Gaussian smoothing kernel (Szucs, 1998) to the
PSTHs generated from training data sets. The width (r) of this Gaussian
filter and the number of training trials represent the only two free param-
eters for the presented method.

For a non-homogeneous Poisson process, the likelihood that a given
set of observed events came from specific time-varying rate function can
be directly calculated by (Snyder & Miller, 1991)

PðX j kðtÞ; t0; t1Þ ¼ exp �
Z t1

t0

kðtÞdt
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where P (X|k (t), t0, t1) is the probability that the set of n events (X)
over the time period t0 to t1 was generated by the rate function k (t),
and k (xi) is the value of the rate function at the times of the occurrence
(xi) of the n events. For time periods where no events occurred, the �
term is omitted.

For neural spike events within a trial, the stochastic rate k (t) over the
trial is a function of the stimulus, and under the Poisson model, Eq. (1) for
a single cell becomes:

PðXcjsÞ ¼ P ðXc j kcðs; tÞÞ ¼ exp �
Z T
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where P (Xc|s) of observing the set of spikes Xc from cell c for stimulus s,
P (Xc|kc (s,t)) is the probability that the observed set of spikes (Xc) from cell
c over the period of the trial [0,T] was generated by the time-varying re-
sponse function kc (s,t) of cell c for stimulus s, and kc (s,xc,i) is the value
of the rate function at the times of the n spikes in the trial (xc,i) for cell
c. The intuitive interpretation of Eq. (2) is that the first term represents
the penalty for not getting spikes when they are expected and the second
term represents the reward for detecting spikes when likely. Although vari-
ations of the Poisson model have been widely used for modeling and esti-
mating spike timing (see Rieke et al., 1997, for a summary), most of these
focus on the likelihoods of observing specific spike counts in different bins
within a trial. The continuous likelihood function shown in (2) does not
require bins to be defined by the user, it only requires a description of
the rate function (k (t)) within the trial. This continuous form is recently
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