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a b s t r a c t

In most data envelopment analysis (DEA) models, the best performers have the full efficient status
denoted by unity (or 100), and, from experience, we know that usually plural decision making units
(DMUs) have this efficient status. Discriminating between these efficient DMUs is an interesting subject,
and a large number of methods have been proposed for fully ranking both efficient and inefficient DMUs.
This paper demonstrates the fact that the rank reversal phenomenon may occur in most DEA ranking
methods; however, this study introduces some ranking methods which do not follow the procedure
and lack this taint. Numerical examples are provided to clearly illustrate the above mentioned phenom-
enon in some DEA ranking methods. In fact, certain ranking methods are surveyed in DEA focusing on
rank preservation and rank reversal phenomena.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Data envelopment analysis (DEA) was initiated in 1978 when
Charnes, Cooper, and Rhodes demonstrated how to change a frac-
tional linear measure of efficiency into a linear programming (LP)
format [12]. DEA as a linear programming method can simulta-
neously take into account multiple inputs and outputs to measure
the relative efficiency for the homogenous DMUs in various contexts.
In particular, the DEA model is a non-parametric model that does not
require the assignment of predetermined weights to input and out-
put factors. DEA has been applied for efficiency measurement in var-
ious public and private sectors, including the power industry
[15,35,53], education [42], R and D performance [14], health care
[4], banking [43,46], the military [12], and courts [30]. Extensive re-
views and additional applications are available in Seiford [44] and
Charnes et al. [10]. The DEA approach was introduced by Charnes
et al. [11];this first model is thus called the Charnes-Cooper-Rhodes
(CCR) model. A DEA model is developed to produce an efficiency
frontier based on the concept of the Pareto optimum. The DMUs that
lie on the efficiency frontier are non-dominated and are, thus, called
Pareto-optimal units or efficient DMUs. DMUs that do not lie on the
efficiency frontier are deemed to be relatively inefficient. The CCR

model assumes constant returns to scale (CRS), implying that the
producers are able to linearly scale the inputs and outputs without
increasing or decreasing efficiency. Under this assumption, the over-
all efficiency scores calculated by input-oriented and output-ori-
ented CCR models are equal. Subsequently, Banker et al. [3]
proposed the BCC model, which assumes variable returns to scale
(VRS). This approach forms a more restricted feasible region than
that of the CCR model and, thus, provides Technical Efficiency (TE)
scores greater than or equal to those obtained assuming CRS. DEA
provides a relative efficiency measure for peer decision making units
(DMUs) with multiple inputs and outputs. While DEA has been pro-
ven an effective approach in identifying the best practice frontiers,
its flexibility in weighting multiple inputs and outputs and its nature
of self-evaluation have been criticized. In most models of DEA, the
best performers have an efficiency score of unity, and, from experi-
ence, we know that there are usually plural DMUs which have this
efficient status. Discriminating between these efficient DMUs is an
interesting research subject. Several authors have proposed
methods for ranking the best performers. These ranking methods
have been divided into seven, somewhat overlapping, areas. The first
idea, generally known as the super-efficiency method (see, e.g.,
[1,58,52,38,24]), ranks through the exclusion of the unit being
scored from the dual linear program and an analysis of the change
in the Pareto frontier. The idea used in the second group is based
on benchmarking (see, e.g., [59]), in which a unit is highly ranked
if it is chosen as a useful target for many other units. The third group
utilizes multivariate statistical techniques, which are generally ap-
plied after the DEA dichotomy classification (see, e.g., [20,50,49]).
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The fourth research area ranks inefficient units through proportional
measures of inefficiency (see, e.g., [6]). The fifth approach requires
the collection of additional, preferential information from relevant
decision makers (DMs), and combines multiple criteria decision
methodologies with the DEA approach (see, e.g., [22,31]). The sixth
research area is based on the concept of common weights analysis
(see, e.g., [34,28]). The last area involves the evaluation of a cross-
efficiency matrix, in which the units are self- and peer-evaluated
(see, e.g., [47,16]).

A question that arises when ranking a group of DMUs is
whether there is a change in the ranks of other DMUs after the
addition or removal of one or more DMUs. Suppose, for instance,
that in the evaluation of the branches of a commercial bank, branch
A has secured the first rank. Then, another branch with the same
inputs and outputs as those of branch A is added to the group. Con-
sidering that the other branches have not changed, the manage-
ment of branch A would naturally expect to preserve their first
place, or at least stand second to the new branch. Contrary to this
expectation, however, the new ranking reveals that neither branch
A nor the new branch has secured the first place. This phenome-
non, first observed in MADM (Multiple Attribute Decision Making)
ranking models, is called rank reversal. The Analytic Hierarchy Pro-
cess (AHP), as a very popular multiple criteria decision making
(MCDM) approach, has been considerably criticized for its possible
rank reversal phenomenon, which means that the relative rankings
of two decision alternatives could be reversed when a decision
alternative is added or deleted. Such a phenomenon was first no-
ticed and pointed out by Belton and Gear [8], which aroused a
long-lasting debate on the validity of AHP and the legitimacy of
rank reversal [1–4,10–13,15,16,20–34,36–40].Wang and Luo [60]
have shown that the rank reversal phenomenon occurs not only
in AHP, but also in many other decision making approaches, such
as the BK method for aggregating multiple ordinal preferences,
the SAW and the TOPSIS methods for MADM, and the DEA cross-
efficiency evaluation method, when a candidate or alternative is
added or removed. In this paper, we will demonstrate, by numeri-
cal examples that rank reversal occurs in most DEA ranking mod-
els. Moreover, some models in which this phenomenon does not
occur will also be discussed. In fact, we survey some ranking meth-
ods in data envelopment analysis with focus on rank reversal and
rank preservation phenomenon. The remainder of the paper is or-
ganized into four Sections. In Section 2, we briefly introduce the
background of DEA. In Section 3, we demonstrate the rank reversal
phenomenon in the cross-efficiency method [47], the super-effi-
ciency models [1,58,38,26,29], and the common weights method
[34]. A discussion of some models in which rank reversal does
not Section 4. And, finally, the paper is concluded in Section 5.

2. Rank reversal in some DEA ranking methods

In this section, we show through numerical examples that the
rank reversal phenomenon also occurs in many DEA ranking ap-
proaches, such as the cross-efficiency method [47], super-efficiency
models [1,58,38,26,29], and the common weights method [34].

2.1. Rank reversal in DEA cross-efficiency evaluation

The cross-evaluation method was first developed by Sexton
et al. [47]. It was developed as a DEA extension tool that can be uti-
lized to identify best performing DMUs and to rank DMUs using
cross-efficiency scores that are linked to all DMUs. The main idea
of cross-evaluation is to use DEA in a peer-evaluation rather than
a self-evaluation mode. Indeed, as Doyle and Green [17] argued,
decision makers do not always have a reasonable mechanism by
which to choose assurance regions; thus, they recommended the
cross-evaluation matrix for ranking units.

Suppose we have a set of n DMUs, and each DMUj produces s
different outputs from m different inputs. The ith input and rth
output of DMUj (j = 1, 2, . . ., n) are denoted by
xijði ¼ 1; . . . ;mÞ and yrj ðr ¼ 1; . . . ; sÞ, respectively. Cross-efficiency
is often calculated in a twophase process. The first phase is carried
out using a standard DEA model, e.g., the CCR model. Specifically,
for any DMUo under evaluation, E�oo, the efficiency score under
the CCR model, is given by the following optimization problem:

E�oo ¼ max Eoo ¼
Ps

r¼1
uroyroPm

i¼1
v ioxio

S:t

Eoo ¼
Ps

r¼1
uroyroPm

i¼1
v ioxio

6 1 j ¼ 1; . . . ;n

uro P 0 r ¼ 1; . . . ; s

v io P 0 i ¼ 1; . . . ;m

ð2:1Þ

where v io and uro represent the ith input and rth output weights for
DMUo. The cross-efficiency of DMUj, using the weights that DMUo
has chosen in Model 2.1, is then

Eoj ¼
Ps

r¼1u�royrjPm
i¼1v�ioxij

j ¼ 1; . . . ;n

where (⁄) denotes optimal values in Model 2.1. For DMUj (j = 1, 2,
. . ., n), the average of all Eoj (o = 1, 2, . . ., n), that is �EJ ¼ 1=n

Pn
o¼1Eoj

is referred to as the cross-efficiency score for DMUj. We point out
that the DEA Model 2.1 is equivalent to the following linear
program:

E�oo ¼ max Eoo ¼
Xs

r¼1

uroyro

S:tXm

i¼1

v ioxio ¼ 1

Xs

r¼1

uroyro �
Xm

i¼1

v ioxio 6 0 j ¼ 1; . . . ;n

uro P 0 r ¼ 1; . . . ; s
v io P 0 i ¼ 1; . . . ;m

ð2:2Þ

Cross-efficiency evaluation has been used in various applications,
e.g., efficiency evaluation of nursing homes [47], selection of a flex-
ible manufacturing system [48], technology selection [2], determin-
ing the most efficient number of operators and the efficient
measurement of labor assignment in a cellular manufacturing sys-
tem (CMS) [19], measuring the performance of the nations in the
Summer Olympic Games [65], evaluating computer numerical con-
trol (CNC) machines in terms of system specification and cost [54],
system R and D project selection [41,68], extension of the analysis
of an efficiency and productivity study on a cellular manufacturing
system (CMS) [56], preference voting [23,69], rating decision alter-
natives [63], and so on. Some studies on other DEA issues are very
relevant to the cross-efficiency concept (see, e.g., [39,7,37]). Chen
[13] compared technical efficiency and cross-efficiency scores in
the electricity distribution sector in Taiwan through a DEA frame-
work. Wu et al. [66,67] used the cross-efficiency evaluation method
to measure the performance of the nations participating in the last
six Summer Olympic Games. They used the cross-efficiency evalua-
tion method because the cross-efficiency score of a DMU is obtained
by computing the DMU’s set of n scores (using the n sets of optimal
weights), and then averaging those scores [47]. Therefore, cross-
efficiency is a better choice for measuring the performance of na-
tions in the Olympic Games. Also, in Wu et al. [64], Liang et al.’s
[33] DEA game cross-efficiency model was modified and used to
measure the performance of the nations participating in the last
six Summer Olympic Games. They extended Liang et al.’s [33]
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