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a b s t r a c t

We propose a clustering method maximizing a new measure called ‘‘group dependence.’’ Group depen-
dence quantifies how precise a certain division of a graph is in terms of dependence distance. Built upon
statistical dependence measure between points driven by Markovian transitions, group dependence
incorporates the geometric structure of input data. Besides capturing degrees of positive dependence
and coherence for a group division, group dependence inherently supplies the proposed clustering
method with a definite decision on the depth of division. We provide an optimality aspect of the method
as theoretical justification in consideration of posterior transition probabilities of input data. Illustrating
its procedure using data from a known structure, we demonstrate its performance in the clustering task
of real-world data sets, Amazon, DBLP, and YouTube, in comparison with selected clustering algorithms.
We show that the proposed method outperforms the selected methods in reasonable settings: in partic-
ular, the proposed method surpasses modularity clustering in terms of normalized mutual information.
We also show that the proposed method reveals additional insights on community structure detection
according to its connectivity scale parameter.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

Identifying community structure in networks has been a central
issue in many fields including sociology, bio-informatics, physics,
and applied mathematics to name only a few. Community struc-
ture detection is a branch of the broader class problem: cluster
analysis. Cluster analysis is an unsupervised task of assigning a
set of objects into homogeneous groups. Depending on the number
of groups in demand, the nature of clustering tasks can be divided
into the following two kinds of problems. In the first case, the
number of clusters is known when clustering is carried out. Graph
partitioning is one line of research that fits this type of clustering.
One of the most well known examples of such tasks that arise in
computer science is assigning to multiple processors a number of
inter-dependent tasks represented as a graph. Since the number
of processors is likely fixed and known, a clustering algorithm that
cannot consider the predefined number of clusters is of little prac-
tical use in this context. Community structure detection, on the other
hand, pursues a slightly different goal in the task of clustering. In
this setting, the number of communities is unknown beforehand.
Not only grouping nodes precisely but also determining the

number of meaningful clusters latent in the graph structure is of
great importance in this class of problems. Social network analysis
falls into this category.

Indeed, many clustering algorithms have been proposed in the
data mining society. Among them is hierarchical clustering,
k-means clustering, distribution-based clustering, and so forth.
They are commonly based on the similarities or closeness among
nodes. Han and Kamber [1] and Gan et al. [2] provide a thorough
survey on details of the algorithms. Conceptually, in view of the
number of clusters in demand, two approaches are possible in
revealing the community structure in networks: agglomerate and
divisive methods. Agglomerate methods start from grouping nodes
with the highest similarity and repeat the process with recalcu-
lated similarities among groups and nodes. The agglomerate ap-
proach is more intuitive than the divisive approach, so it was
developed earlier and has been widely used. Agglomerate hierar-
chical clustering is a representative example in this approach when
the true number of clusters is unknown. This approach needs to be
followed by an additional critical step that involves a decision cri-
terion for the optimal number of clusters [3]. k-means clustering
groups nodes in a similar way with predefined number of cen-
troids. In contrast, divisive methods—possessing inherent rules
for the optimal number of clusters—repeat cutting the network
successively until no subdivision of the network yields gain. One
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of the methods in this avenue is modularity-based clustering pro-
posed by Newman [4]. Modularity measures how precise a division
of the network is against a graph with edges placed at random and
has played an essential role in detecting community structures in
networks. One drawback of this method is that the random modu-
larity measure employs a fixed global model, which assumes that
each node can be linked to any other nodes of the network whether
they are large or small regardless of the geometric structure of the
network. Thus, it cannot adjust the level of resolution or the scale
on which the modularity measure relies. Therefore, it would be
desirable to propose another clustering method which not only in-
cludes an inherent rule for the optimal number of clusters, but also
possesses flexibility in adjusting the level of scale from which it
takes into account the geometric structure of the network.

In this paper, we propose a clustering method maximizing a
new measure called ‘‘group dependence.’’ Based on mutual infor-
mation as well as posterior probabilities of network connections,
group dependence provides flexibility in adjusting the scale on
which the whole graph is viewed and the level of connectedness
upon which a division of the network is evaluated in terms of
dependence. Lee et al. [5] demonstrated the efficacy of the depen-
dence concept and dependence distance in the context of dimen-
sionality reduction. The statistical dependence measure between
nodes which the proposed clustering method relies on is initially
motivated by Markovian transitions among nodes and extends
the concept of mutual information into a point-wise fashion. The
dependence measure is also a lift measure between nodes that is
widely used to capture the level of association in association rule
learning. A graph can be viewed as being connected via a Markov
chain, which means that the neighborhood of a node evolves
through Markovian transitions. The adjacency matrix of the graph
and the transition steps in the neighborhood of each node
determine the neighborhood structure of the graph and the scale
on which the whole graph is viewed. The degree of relative
dependence for a group division against random division from
the neighborhood structure, called as group dependence, is as-
sessed as a coherence measure for the division, naturally leading
to a clear answer on the division depth and a group configuration
with maximized group dependence. Furthermore, the level of con-
nectedness for subdivision is adjustable in a straightforward man-
ner. We will describe the detailed machinery and performance of
the algorithm in the following sections.

This paper proceeds as follows. In Section 2, we start with defin-
ing group dependence as an extension of dependence distance. We
then explain the machinery of the proposed dependence clustering
and illustrate its use by clustering a simple data set. Section 3
compares performance of the dependence clustering with that of
popular clustering methods such as hierarchical, spectral, and
modularity clustering. We first run comparison on simulated data,
and then use three real-world data sets: the karate club factions
data by Zachary [6], tags co-occurrence network from Groupon,
and large social and information network data from Amazon,
DBLP,1 and YouTube. We conclude with discussion and future re-
search issues in Section 4.

2. The dependence clustering

In this section, we first briefly summarize the concept of statis-
tical dependence. We then introduce the concept of group depen-
dence to measure coherence for a group division in terms of
dependence, followed by a new clustering method based on group
dependence. We also provide an optimality aspect of the proposed
method and further details of the algorithm.

2.1. Dependence

Suppose we have n data points in Rb. Each data point x1; . . . ; xn

represents a node in an undirected graph. Denote the set of nodes
by X ¼ fx1; . . . ; xng. We view the graph as a Markov chain assuming
that the whole chain is ergodic and all transitions follow the Mar-
kovian property. We can then define the neighborhood of a node as
the nodes that can be reached through Markovian transitions from
the focal node. This neighborhood structure provides a foundation
to calculate the distance in a new measure between nodes in a
graph. To illustrate the concept of neighborhood transitions, we
provide Fig. 1, in which the node 3 is closer to the node 1 than
the node 2 is to the node 1 in Euclidean distance using the arrows.
However, in consideration of the edge structure representing Mar-
kovian transition between the nodes, the graph geometry suggests
that the distance between nodes 1 and 2 ought to be smaller than
that between nodes 1 and 3 in terms of neighborhood-transition
steps: node 2 is four transition steps away from node 1 while node
3 is thirteen.

Lee et al. [5] proposed ‘‘dependence distance’’ between two
nodes for a Markov chain in the t-step-wide neighborhood evolu-
tion in X, where t is an exogenously given parameter. They demon-
strated its use in their proposed dimensionality reduction
algorithm, while we devise a new community structure detection
algorithm based on it. So we summarize the concept briefly in this
section and propose a new measure on dependence suitable for
community structure detection in the next section. We assume
that any two nodes in X can be connected via Markovian transi-
tions, although the probability of a transition decays as the number
of steps between the two nodes increases. Let us define Xt as a ran-
dom walk that represents a node (or state) at tth transition. We de-
fine the statistical dependence between a node in the initial state
(X0) and another node at step t (Xt) as follows:

Definition 2.1. Dependence between xm; xi 2 X, denoted by
DepðX0 ¼ m;Xt ¼ iÞ, is

DepðX0 ¼ m;Xt ¼ iÞ ¼ PrðXt ¼ i;X0 ¼ mÞ
PrðXt ¼ iÞPrðX0 ¼ mÞ : ð2:1Þ

By definition, dependence is closely linked to the point-wise
mutual information. The point-wise mutual information is widely
used in information theory and statistics as a measure of associa-
tion. Since mutual information IðX0;XtÞ between two random vari-
ables X0 and Xt is the expectation of the point-wise mutual
information for all realizations of X0 and Xt , we can express it in
terms of dependence as follows:

Fig. 1. The concept of neighborhood transitions is illustrated. The edge represents
one step transition. Although node 3 (in green) is closer to node 1 (in red) in
Euclidean distance denoted by arrows than node 2 (in blue) is to node 1, node 2 is
closer to node 1 than node 3 is to node 1 in terms of neighborhood-transition steps
denoted by edges. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

1 A computer science bibliography website; http://www.informatik.uni-trier.de/
ley/db/.
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