Knowledge-Based Systems 60 (2014) 73-81

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

A filtering method for algorithm configuration based on consistency
techniques

@ CrossMark

Ignacio Araya *, Maria-Cristina Riff

Depto. Informdtica, Universidad Técnica Federico Santa Maria, Av. Espaiia 1680, V region, Chile

ARTICLE INFO ABSTRACT

Article history:

Received 9 January 2013

Received in revised form 2 January 2014
Accepted 6 January 2014

Available online 11 January 2014

Heuristic based algorithms are typically constructed following an iterative process in which the designer
gradually introduces or modifies components or strategies whose performance is then tested by empir-
ical evaluation on one or more sets of benchmark problems. This process often starts with some generic
or broadly applicable problem solving method (e.g., metaheuristics, backtracking search), a new algorith-
mic idea or even an algorithm suggested by theoretical considerations. Then, through an iterative process,
various combinations of components, methods and strategies are implemented/improved and tested.
Even experienced designers often have to spend substantial amounts of time exploring and experiment-
ing with different alternatives before obtaining an effective algorithm for a given problem.

In this work, we are interested in assisting the designer in this task. Considering that components,
methods and strategies are generally associated with parameters and parameter values, we propose a
method able to detect, through a fine-tuning process, ineffective and redundant components/strategies
of an algorithm. The approach is a model-free method and applies simple consistency techniques in order
to discard values from the domain of the parameters. We validate our approach with two algorithms for

Keywords:

Parameter tuning

Constraint satisfaction problems
Consistency techniques
Algorithm configuration
Algorithm design

solving SAT and MIP problems.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

When we design an algorithm for problem solving, generally we
address several important decisions related to its components,
such as which variable-ordering heuristic to use, which transfor-
mation algorithm to use, and whether to include some specific
methods. These decisions can be handled by algorithm parameters.
Then, we can apply a fine-tuning process to determine which com-
ponents are crucial for the algorithm performance.

There exist several automated procedures to find the optimal
instantiation of the algorithm parameters (called configuration here)
of a given algorithm. The problem of finding the optimal configura-
tion is known as the algorithm configuration problem (AC)
[17,3,9,16]. Automated procedures for solving this problem are
called configuration algorithms or configurators, while algorithms
whose parameters are tuned are called target algorithms.

Usually, finding near-optimal configurations allows good per-
formance on large data sets. However, this does not directly assist
with the design phase, specifically, with discarding, simplifying or
just better understanding the components of the target algorithm.
Several configuration algorithms exist that supply information

* Corresponding author. Tel.: +56 322654962.
E-mail addresses: iaraya@inf.utfsm.cl (I. Araya), mcriff@inf.utfsm.cl (M.-C. Riff).

0950-7051/$ - see front matter © 2014 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.knosys.2014.01.005

about the parameters/components of the target algorithm in addi-
tion to finding near-optimal configurations.

Sampling methods (e.g., Latin-Square [21] and Taguchi
Orthogonal Arrays [26]) take a representative sample of the
configuration space using a full factorial design. The different con-
figurations are analyzed to predict which parameter values work
best and which are the most robust. CALIBRA [2] and meta-GA
[21] reduce the search area from which new configurations are
sampled at each iteration. Thus, they can be only used to find
good configurations and are not well suited to analyzing the
parameters.

Model-based methods construct a model based on a reduced set
of configurations. This model predicts the performances of new
configurations. A common approach is to use a regression method
to predict the utility of a configuration [12,22,14]. Based on the
model, it is possible to identify some features of the parameters.
Sequential model-based methods allow for a better exploration
of the configuration space. Coy et al. [11] proposes a procedure
consisting of a model-based method followed by a local search pro-
cedure to optimize the parameter values. SPO [5,6] goes further. In
each iteration, it generates a new set of configurations and predicts
their utilities using the current model. The vectors with the highest
predicted performance are used to update the model for the next
iteration. Finally, the procedure returns an accurate model of the
most promising areas. Model-based methods commonly use


http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2014.01.005&domain=pdf
http://dx.doi.org/10.1016/j.knosys.2014.01.005
mailto:iaraya@inf.utfsm.cl
mailto:mcriff@inf.utfsm.cl
http://dx.doi.org/10.1016/j.knosys.2014.01.005
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys

74 I. Araya, M.-C. Riff/ Knowledge-Based Systems 60 (2014) 73-81

Gaussian process models [23], thus they are limited to continuous
parameters. SMAC [16] uses a new model class, based on the Ham-
ming distance and random forests [10], to support categorical
parameters. SMAC is also capable of handling multiple instances
by integrating information about their features into the response
surface model. Thus, the final model predicts the algorithm run-
time for the configurations and instance features.

The objective of racing methods [20,8,7] is to identify the best
configurations from a large set, performing a minimum number
of tests. In addition to finding the best configuration (with a certain
confidence level) these methods provide information to estimate
the robustness to changes in parameter values. Iterative F-RACE
[4,9] combines racing with model-based methods. It starts by using
a reduced population that represents the whole space of configura-
tions. Using F-RACE [8,9], it reduces this population until a certain
condition is met. Then, a multi-variate normal distribution fit on
the surviving vectors is used as a probability density function to
sample points for a new population. The entire procedure is re-
peated until a termination criteria is met. Like sequential model-
based methods, it finds good configurations and valuable informa-
tion about the parameters.

Evolutionary algorithms also have been used to find configura-
tions with high utility. The ParamILS framework [18,17] starts with
a default parameter configuration and iteratively improves it by
searching in a neighborhood defined as the variation of the value
of only one parameter. It requires that the procedure configuration
0 is better than configuration ¢’ be defined. A basic implementation
of the procedure consists of comparing the average utilities over N
runs, however, FocusedILS [17], an extension of the framework, re-
places the procedure with racing.

Evolutionary algorithms are very good at finding high quality
vectors; however, they do not provide any indication of the robust-
ness of the target algorithm. REVAC [24] is a specific type of EA for
configuration where the population approximates the density
function of the most promising areas, similar to Iterative F-RACE.
The function is decomposed by coordinates (i.e., blind for parame-
ter interactions), but can be used to analyze the sensitivity and rel-
evance of the different parameters. An extension of REVAC [13]
finds values that can obtain good results across a large range of
different instances.

Multi-objective methods allow us to take into account multiple
problems or performance indicators. M-FETA [25] models the
problem as a multi-objective optimization problem. It creates a
Parameter Pareto Front that can be used to evaluate robustness
to changes in problem definition, as well as performance using
multiple performance criteria. An important added value of mul-
ti-objective methods with respect to other approaches lies in the
insights regarding the applicability and fallibility (i.e., the relative
difference between good and bad configuration performances
[13]) of the target algorithm.

1.1. Our approach

In this paper we introduce NODOM-C (NOn-DOMinated Consis-
tency algorithm), a model-free algorithm based on sampling. The
goal of NODOM-C is to detect useful components and to help the
algorithm designer to identify those that are ineffective.

NODOM-C may work with target algorithms containing a very
large number of parameters. To our knowledge, only FocusedILS,
GGA [3] and SMAC (a model-based approach) work with this type
of target algorithm. Of the approaches that work with a large num-
ber of parameters, only SMAC may provide information about the
parameters of the target algorithm. Iterative F-RACE also provides
valuable information. Both of them, however, are sophisticated
model-based approaches.

NODOM-C is based on sampling. However, unlike other sam-
pling methods, which use sampling to detect promising parameter
regions, our method uses sampling to remove and filter the config-
uration space. We thus refer to our approach as a filtering method
for algorithm configuration. The main procedure iterates over all
the parameters of the target algorithm. For each parameter, all
its possible values are compared by using a sample where the rest
of the parameters are set randomly from the parameter domains.
Special care is taken to perform a fair comparison: two parameter
values are compared using the same values for the rest of the
parameters, the same instance set and the same seed. The values
of the parameters, instances and seed change from one comparison
to the other. A number m of comparisons is performed for every
pair of parameters values. Then, a parameter value is eliminated
from the domain if it is dominated by some other value (i.e., if in
every comparison, it is worse than or equal to some other value)
in the domain. If, after iterating over all the parameters, the config-
uration space has been reduced, then the whole procedure may be
repeated to obtain further reductions. Finally, NODOM-C returns a
reduced space of configurations and sets of comparable values for
the parameters. From the results, the algorithm designer can easily
deduce some interesting information: which components to dis-
card and which components to use to perform a determined task
(without impacting performance),

It is important to emphasize that, unlike other configuration
algorithms, our goal is not to find the best configuration for the tar-
get algorithm for a given set of instances. (A best configuration
works relatively well for each instance of the given set, however,
it may omit some important components of the target algorithm
which may be effective in a few instances of the set.) In fact, our
goal is to detect ineffective components to reduce the complexity
of the target algorithm while maintaining performance. Ineffective
components mean components which are useless in every single in-
stance in the set. The algorithm is inspired by regression models,
where we can reduce the complexity of a model by reducing the
number of variables involved without decreasing the quality of
the models estimates.

In Section 2, we provide a formal definition of the algorithm
configuration problem. Section 3 describes some concepts and
definitions used in the filtering process. In Section 4, we detail
NODOM-C, our filtering method for algorithm configuration.
Experiments summarizing different aspects of the approach are
shown in Section 5. Conclusions are given in Section 6.

2. The algorithm configuration problem

The Algorithm Configuration problem (AC) can be stated as fol-
lows: given a target algorithm, a set of parameters for the algo-
rithm and a set of input data, find parameter values under which
the algorithm achieves the best performance on the input data.

First, let us introduce some definitions. Let p,,...,p, be the
parameters of the target algorithm. The domain of possible values
for each parameter p; is denoted by ;. ® = @ x --- x O4 denotes
the space of all feasible configurations, and 0 = (04,...,04) € ® cor-
responds to a parameter instantiation or configuration. We distin-
guish two main types of parameters:

o Categorical parameters: Those parameters which correspond to a
choice inside the target algorithm. Components, methods and
strategies are included in this category.

e Numerical parameters: Those parameters with real or integer
domains. Some examples of numerical parameters are the pop-
ulation size and the mutation rate in a genetic algorithm, the
temperature in a simulated annealing, and the required preci-
sion of an iterative method.



Download English Version:

https://daneshyari.com/en/article/403640

Download Persian Version:

https://daneshyari.com/article/403640

Daneshyari.com


https://daneshyari.com/en/article/403640
https://daneshyari.com/article/403640
https://daneshyari.com

