Knowledge-Based Systems 39 (2013) 109-123

Contents lists available at SciVerse ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

TEX: An efficient and effective unsupervised Web information extractor

Hassan A. Sleiman *, Rafael Corchuelo

Universidad de Sevilla, ETSI Informdtica. Avda. de la Reina Mercedes, s/n, Sevilla E-41012, Spain

ARTICLE INFO ABSTRACT

Article history:

Received 23 March 2012

Received in revised form 11 October 2012
Accepted 12 October 2012

Available online 26 October 2012

The World Wide Web is an immense information resource. Web information extraction is the task that
transforms human friendly Web information into structured information that can be consumed by auto-
mated business processes. In this article, we propose an unsupervised information extractor that works
on two or more web documents generated by the same server side template. It finds and removes shared

token sequences amongst these web documents until finding the relevant information that should be

Keywords:

Information extraction
Semi-structured web documents
Malformed documents
Unsupervised technique
Heuristic-based technique

extracted from them. The technique is completely unsupervised and does not require maintenance, it
allows working on malformed web documents, and does not require the relevant information to be for-
matted using repetitive patterns. Our complexity analysis reveals that our proposal is computationally
tractable and our empirical study on real-world web documents demonstrates that it performs very fast
and has a very high precision and recall.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The Web is the hugest information repository. Usually, scripts
are used to fill in templates with information that is retrieved from
server-side databases; the results are formatted using HTML tags
and CSS classes. The documents in the Web can be classified into
two groups: unstructured documents, whose relevant information
are pieces of free text, e.g., blog entries or news articles, and semi-
structured documents, whose relevant information are records of
attributes that are usually formatted as tables or lists, e.g., an on-
line book store. (Note that the criteria to classify which informa-
tion is relevant depends completely on the context.) Our work fo-
cuses on semi-structured documents.

Extracting the relevant information from a semi-structured doc-
ument to feed an automated business process is not usually an
easy task due to the irrelevant information that the template intro-
duces in order to present it in a friendly format [3]. Information
extractors are intended to help software engineers in this task [10].

Many information extractors rely on extraction rules. Although
they can be handcrafted [15,24,4,42,51,50,20], the costs involved
motivated many researchers to work on proposals to learn them
automatically. These proposals are either supervised, i.e., they re-
quire the user to provide a number of information samples to be
extracted [11,44,58,26,32,8,22,9,14,18,30,5,40,21,59], or unsuper-
vised, i.e., they extract as much prospective information as they
can and the user then gathers the relevant information from the
results [62,12,16,2,28,25,60,39,46,64,67,38,59,57]. Since typical

* Corresponding author.
E-mail addresses: hassansleiman@us.es
(R. Corchuelo).

(H.A. Sleiman), corchu@us.es

0950-7051/$ - see front matter © 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.knosys.2012.10.009

web documents are growing in complexity, a number of authors
are also working on techniques whose goal is to identify the region
within a web document where relevant information is most likely
to be contained [37,7,61,63,27,34,65,66,52,45,35,6]. Sleiman and
Corchuelo [55] have recently surveyed and compared the previous
techniques.

Information extractors that rely on extraction rules do not usu-
ally adapt well to changes to the Web. Note that once a set of extrac-
tion rules is handcrafted or learnt, the Web keeps evolving and it is
not uncommon that changes may invalidate the existing extraction
rules. This motivated some authors to work on proposals to main-
tain extraction rules (semi-)automatically [31,48,49,41,33,13].
Contrarily, others worked on unsupervised proposals that do not
rely on extraction rules, but are based on a number of hypothesis
and heuristics that have proven to work well in many cases
[1,53,17,23]; changes to a web site do not usually have an impact
on these extractors since they analyse every new web document
independently from the previous ones.

Our focus is on unsupervised proposals that do not rely on
extraction rules. The existing proposals work on one or more input
web document and search for repetitive structures that hopefully
identify the regions where the relevant information resides.
Alvarez et al. [1] use clustering to find a rough region where the rel-
evant information is most likely to be located, i.e., the information
region, and then use clustering, tree matching and multi-string
alignment to extract prospective information; Simon and Lausen
[53] first use a modified version of MDR [36] and then a multi-string
alignment algorithm to extract prospective information; Buttler
et al. [6] rely on six heuristics to identify the information region
and to extract prospective information from it; the proposals by
Refs. [17,23] focus on extracting prospective information from lists:

http://dx.doi.org/10.1016/j.knosys.2012.10.009
mailto: hassansleiman@us.es
mailto: corchu@us.es
http://dx.doi.org/10.1016/j.knosys.2012.10.009
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys

110 H.A. Sleiman, R. Corchuelo/Knowledge-Based Systems 39 (2013) 109-123

the former uses a corpus and a scoring function that helps delimit
the information in a list and tabulate it, whereas the latter learns
a statistical model according to which the information is also delim-
ited and tabulated. Implicitly, the previous proposals assume that
the input web documents contain similar information records since
they all rely on finding repetitive structures.

A four-page abstract of our proposal was presented elsewhere
[56]. In this article, we introduce TEX, which is an unsupervised
information extractor that does not rely on extraction rules. Con-
trarily to the previous proposals, it does not require the input
web documents to be translated into DOM trees, i.e., it can work
on malformed web documents without correcting them, and does
not require the relevant information to be formatted using repeti-
tive structures inside a web document. It works on two or more
web documents and compares them in an attempt to discover
shared patterns that are not likely to provide any relevant informa-
tion, but parts of the template used to generate the web docu-
ments. (We define a shared pattern of size s between two token
sequences t1 and t2 as a subsequence of s consecutive tokens that
occurs at least once in both t1 and t2.) The idea of identifying
shared patterns lies at the heart of proposals like RoadRunner
[16], which uses a multi-string alignment algorithm to learn a reg-
ular expression that models the template and its variable parts,
FiVaTech [28], which relies on tree matching, tree alignment, and
mining techniques, or EXALG [2], which uses two statistical tech-
niques to differentiate the role of individual tokens and determine
which are equivalent to one another. Contrarily to these proposals,
TEX relies on quite a simple multi-string alignment algorithm that
has proven to be very effective and efficient in practice. We have
computed an upper limit to the worst-case space and time com-
plexity of our algorithm and we have proven that it is computa-
tionally tractable (note that there are very few complexity results
in this field); furthermore, we have conducted a series of experi-
ments with 2084 web documents from 55 real-world web sites
and our results confirm that our proposal can achieve a mean pre-
cision as high as 96%, a mean recall as high as 95%, with a mean
execution time of 0.81s. We conducted the same experiments
using other well-known techniques in the literature, and our con-
clusion is that our proposal outperforms them.

The rest of the article is organised as follows: Section 2 presents
TEX and describes the sub-algorithms on which it relies; Section 3
analyses its time complexity; Section 4 reports on our experimen-
tal results and compares TEX to other techniques in the literature;
finally, Section 5 concludes our work.

2. Description of our proposal

We present the algorithm that lies at the heart of TEX in Fig. 1. It
works on a collection of web documents, which we denote as
TextSet, and a range of integers, which can introduce a bias to
our search procedure. Intuitively, a TextSet is a set of Texts, which
are sequences of Tokens. TEX is not bound with a particular tokeni-
sation schema; our implementation and our experiments were car-
ried out using a simple tokenisation schema according to which
tokens represent either script blocks, style blocks, HTML tags, or
#PCDATA, but this is not an intrinsic feature of our proposal. Note
that we use Text as a data type that allows to represent both web

1: TEX (ts: TextSet; min, maz: int): List(TextSet)
2: [= extract(ts, min, max)

3: result = filter(1)

4: return result

Fig. 1. Algorithm TEX.

documents and fragments of web documents, as well as the infor-
mation that is extracted from them.

The algorithm works in two steps: at line 2, we invoke Algo-
rithm extract, which makes an attempt to extract the information
that varies from document to document; in other words, it at-
tempts to discard information that is likely to belong to the tem-
plate used to generate the input web documents. Algorithm
extract works on the collection of input web documents and
searches for shared patterns of size max,max—1,...,min. If
min > 1 or max is less than the size of the shortest input document,
then the search has a bias that may lead to situations in which
Algorithm extract returns information that actually belongs to the
template, which is the reason why we invoke a filtering algorithm
at line 3.

Fig. 2 presents a running example. We assume that the algo-
rithm is executed on TextSet TS1, which is composed of documents
T1, T2, and T3; the result is the list of TextSets L1, which contains
the extracted TextSets TS4, TS7, TS11, TS12, TS9, and TS10.

In the following subsections, we provide additional details on
the ancillary algorithms on which TEX relies.

2.1. Algorithm extract

Algorithm extract searches for shared patterns of size max down
to min in a TextSet. For instance, assume that it is invoked on the
TextSet denoted as TS1 in Fig. 3 and that it has to search for shared
patterns whose size is in the range 10 down to 1. Note that there
are neither shared patterns of size 10,9, nor 8; the longest shared
pattern is <html><head><title>Results</title></Head><body>, whose
size is 7 tokens. The algorithm then attempts to expand TextSet
TS1 into three additional TextSets that contain the prefixes, the
separators, and the suffixes into which the shared pattern parti-
tions the Texts in TS1. In this example, there are neither prefixes
nor separators, since the shared pattern is found at the beginning
of the Texts in TS1; there are, however, three suffixes that are
stored in TextSet TS2. The algorithm then discards TextSet TS1
and proceeds with the new TextSet TS2. The longest shared pattern
that is discovered in TS2 is
</body></htmI>, which results in a
new TextSet that is denoted as TS3. The same procedure is applied
as many times as necessary until no more shared patterns are
discovered.

We present Algorithm extract in Fig. 4. It works on a TextSet ts, a
minimum pattern size min and a maximum pattern size max; it re-
turns a list of TextSets that should contain as much prospective
information as possible. The main loop at lines 3-15 iterates over
all possible sizes from max down to min; for each size, the inner
loop at lines 5-13 searches for a shared pattern of that size. Note
that variable result acts as a queue in which we initially put the
TextSet on which the algorithm has to work, and then the new
TextSets into which it is expanded. In each iteration of the inner
loop, a TextSet is removed from result and expanded at line 7. Algo-
rithm expand, which is presented in the following section, searches
for shared patterns of a given size in a TextSet; if one such pattern
is found, then it is used to expand the current TextSet into new
TextSets with prefixes, separators, and suffixes, which are added
to result so that they can be analysed later in the inner loop; if
no shared pattern is found, then the original TextSet is added to a
buffer. Once the inner loop finishes, the buffer contains all of the
new TextSets that have been produced, and it is transferred to
the result variable so that the algorithm can search for new shared
patterns of a smaller size, if possible.

Algorithm expand. This algorithm searches for a shared pattern of
a given size inside a given TextSet; if such a pattern is found, it then
expands the TextSet into a collection of new TextSets with prefixes,
separators, and suffixes. We have already illustrated how Algo-
rithm expand works on two simple cases in which the expansion

Download English Version:

https://daneshyari.com/en/article/403683

Download Persian Version:

https://daneshyari.com/article/403683

Daneshyari.com

https://daneshyari.com/en/article/403683
https://daneshyari.com/article/403683
https://daneshyari.com

