
Computationally efficient induction of classification rules with the PMCRI
and J-PMCRI frameworks

Frederic Stahl a,⇑, Max Bramer b

a Bournemouth University, School of Design, Engineering & Computing, Poole House, Talbot Campus, BH12 5BB Poole, United Kingdom
b University of Portsmouth, School of Computing, Buckingham Building, Lion Terrace, PO1 3HE Portsmouth, United Kingdom

a r t i c l e i n f o

Article history:
Received 28 January 2011
Received in revised form 10 April 2012
Accepted 11 April 2012
Available online 21 April 2012

Keywords:
Parallel computing
Parallel rule induction
Modular classification rule induction
PMCRI
J-PMCRI
Prism

a b s t r a c t

In order to gain knowledge from large databases, scalable data mining technologies are needed. Data are
captured on a large scale and thus databases are increasing at a fast pace. This leads to the utilisation of
parallel computing technologies in order to cope with large amounts of data. In the area of classification
rule induction, parallelisation of classification rules has focused on the divide and conquer approach, also
known as the Top Down Induction of Decision Trees (TDIDT). An alternative approach to classification
rule induction is separate and conquer which has only recently been in the focus of parallelisation. This
work introduces and evaluates empirically a framework for the parallel induction of classification rules,
generated by members of the Prism family of algorithms. All members of the Prism family of algorithms
follow the separate and conquer approach.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

Many application areas are confronted with the problem of
applying classification rule induction algorithms or data mining
technologies in general on very large datasets. Such application
areas include bioinformatics and chemistry which are confronted
with large data sets, for example data generated in molecular
dynamics simulation experiments. Researchers in this area need
ways to manage, store and find complex relationships in the sim-
ulation data [1]. The molecular dynamics datasets can reach 100s
of gigabytes of data for a single simulation and the community is
just starting to be able to store these massive amounts of simula-
tion data [2]. A further area confronted with massive amounts of
data is astronomy. Here some databases consist of terabytes of im-
age data and are still growing as further data are collected in rela-
tion to the GSC-II [3] and the still ongoing Sloan survey [4]. Large
international business corporations collect and share customer
transactions in databases worldwide. Loosely speaking there is a
significant need for well scaling knowledge discovery and data
mining technologies for massive datasets for both the scientific
and business world. Parallelisation seems to be one of the methods

used in the data mining community to tackle the problem of scala-
bility in computational terms [33,10,21].

One of the major challenges in data mining is the induction of
classification rules on massive datasets. There are two general ap-
proaches to inducing classification rules, the divide and conquer and
the separate and conquer approaches. The induction of classification
rules can be traced back to the 1960s [5]. The divide and conquer
approach induces classification rules in the form of a decision tree
by recursively splitting the classification problem [6]. Its most pop-
ular representatives are the C4.5 [7] and C5.0 systems. Contrary to
decision trees the separate and conquer approach induces classifica-
tion rules directly that explain a part of the training data. Separate
and conquer can be traced back to the 1960s [8]. Parallel classifica-
tion rule induction has focused on the divide and conquer approach.
A notable development here is SPRINT [9]. Joshi et al. [10] points
out that in some cases SPRINT may suffer from workload balancing
issues and the ScalParC algorithm is proposed. However there are
virtually no approaches to scaling up the separate and conquer
approach.

The Prism [11] family of algorithms follows the separate and
conquer approach and addresses some of the shortcomings of deci-
sion trees, such as the replicated subtree problem outlined in Sec-
tion 2.1. More recent variations of Prism have demonstrated a
similar classification accuracy compared with decision trees and
in some cases even outperform decision trees [17,15]. An imple-
mentation of Prism is also available in the WEKA data mining pack-
age [35]. This work proposes and evaluates the Parallel Modular

0950-7051/$ - see front matter � 2012 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.knosys.2012.04.014

⇑ Corresponding author.
E-mail addresses: fstahl@bournemouth.ac.uk (F. Stahl), Max.Bramer@port.ac.uk

(M. Bramer).

Knowledge-Based Systems 35 (2012) 49–63

Contents lists available at SciVerse ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/ locate /knosys

http://dx.doi.org/10.1016/j.knosys.2012.04.014
mailto:fstahl@bournemouth.ac.uk
mailto:Max.Bramer@port.ac.uk
http://dx.doi.org/10.1016/j.knosys.2012.04.014
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys


Classification Rule Induction framework (PMCRI) which paralle-
lises the Prism family of algorithms, in order to computationally
scale up Prism algorithms to large datasets. PMCRI could poten-
tially scale up further algorithms, that follow the separate and con-
quer approach, to large datasets, however, it may not be applicable
to all of them.

In the PMCRI framework the parallelisation is aimed at a net-
work of computer workstations with the reasoning that modest
sized organisations may not have the financial strength to afford
a supercomputer but will most likely have a network of worksta-
tions in place which could be used to run parallel algorithms.
PMCRI partitions the training data according to the features space
and assigns equally sized subsets of the feature space to each com-
puting node. Each computing node processes its part of the feature
space and then cooperates with the other computing nodes in or-
der to combine the computed results to classification rules. The
computational performance of PMCRI is evaluated in terms of its
execution time dependent on the number or data instances and
the number of attributes/features. Furthermore PMCRI is evaluated
to show how much computational benefit is gained by using p pro-
cessors instead of one, dependent on the size of the datasets.

This paper is organised as follows: Section 2 introduces the
Prism family of algorithms and compares them with decision trees;
Section 3 discusses the PMCRI framework and Section 4 evaluates
it. Section 5 introduces a version of PMCRI that incorporates a pre-
pruning facility (J-PMCRI) and evaluates it in computational terms.
Finally Section 6 closes the paper with a brief summary, concluding
remarks and an outlook to future work.

2. The Prism family of algorithms

The Prism family of algorithms is a representative of the ‘sepa-
rate and conquer’ approach outlined in Section 1 as opposed to the
‘divide and conquer’ approach.

2.1. The replicated subtree problem

The ‘divide and conquer’ approach induces classification rules in
the intermediate form of a tree whereas the ‘separate and conquer’
approach, and thus the Prism family of algorithms, induces modu-
lar rules that do not necessarily fit into a decision tree. Modular
rules such as

IF A = 1 AND B = 1 THEN class = x
IF C = 1 AND D = 1 THEN class = x

will not fit into a decision tree as they have no attribute in com-
mon. In order to represent them in a decision tree, additional

logically redundant rule terms would have to be added. This can
result in complex and confusing trees as Cendrowska shows in
[11] and is also known as the replicated subtree problem [12].
Cendrowska’s example illustrates the replicated subtree problem
for the two rules listed above. She assumes that all attributes can
have three possible values and only the two rules above classify
for class x. Fig. 1 shows the simplest possible decision tree express-
ing the two rules above, all remaining classes that are not class x
are labelled y.

Cendrowska’s claim that decision tree induction algorithms
grow needlessly complex is vindicated by extracting the rules for
class x from the tree in Fig. 1, which are:

IF A = 1 AND B = 1 THEN class = x
IF A = 1 AND B = 2 AND C = 1 AND D = 1 THEN class = x
IF A = 1 AND B = 3 AND C = 1 AND D = 1 THEN class = x
IF A = 2 AND C = 1 AND D = 1 THEN class = x
IF A = 3 AND C = 1 AND D = 1 THEN class = x

2.2. The ‘separate and conquer’ approach

Algorithms induced by the ‘separate and conquer’ approach aim
to avoid the replicated subtree problem by avoiding the induction
of redundant rule terms just for the representation in a decision
tree. The basic ‘separate and conquer’ approach can be described
as follows:

While Stopping Criterion not satisfied{
rule = Learn_Rule;
Remove all data instances covered from Rule;

add rule to the rule set;

}

The Learn_Rule procedure (or specialisation process) induces
the ‘best’ rule for the current subset of the training set by searching
for the best conjunction of attribute-value pairs (rule terms). The
perception of ‘best’ depends on the heuristic used to measure the
goodness of the rule, for example its coverage or predictive accu-
racy. The Learn_Rule procedure can be computationally very
expensive, especially if all possible conjunctions of all possible rule
terms have to be considered. After a rule is induced, all examples
that are covered by that rule are deleted and the next rule is in-
duced using the remaining examples until a Stopping Citerion is ful-
filled. Different ‘separate and conquer’ algorithms implement
different methods to reduce the search space of the Learn_Rule pro-
cedure and the Stopping Criterion. Some examples of algorithms
that follow the ‘separate and conquer’ approach are [11,36,8,37].

2.3. The Prism approach

In the Prism approach, first a Target Class (TC), for which a rule
is induced, is selected. Prism then uses an information theoretic
approach [11] based on the probability with which a rule covers
the TC in the current subset of the training data to specialise the
rule. Once a rule term is added to the rule, a further rule term is in-
duced only on the subset of the training data, that is covered by all
the rule terms induced so far. This is done until the rule currently
being induced only covers instances that match the TC. In Cend-
rowska’s original Prism algorithm the TC is selected at the begin-
ning by the user and only rules for the TC are induced.
Alternatively the algorithm can be given a list of possible classes
and is executed for each class in turn. Bramer’s PrismTCS (Target
Class Smallest first) algorithm [13] sets the TC for each new rule
to be induced to the current minority class. Another member of
the Prism family is PrismTC which sets the TC for each new rule
to be induced to the current majority class. Unpublished experi-
ments by Bramer revealed that PrismTC does not compete wellFig. 1. Cendrowska’s replicated subtree example.

50 F. Stahl, M. Bramer / Knowledge-Based Systems 35 (2012) 49–63



Download English Version:

https://daneshyari.com/en/article/403738

Download Persian Version:

https://daneshyari.com/article/403738

Daneshyari.com

https://daneshyari.com/en/article/403738
https://daneshyari.com/article/403738
https://daneshyari.com

