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a b s t r a c t

The role of sensory inputs in the modelling of synchrony regimes is exhibited by means of networks
of spiking cells where the relative strength of the inhibitory interaction is controlled by the activation
of a linear unit working as a gating variable. Adaptation to stimulus size is determined by the value of
a changing length scale, modelled by the time-varying radius of a circular receptive field. In this set-
up, ‘consolidation’ time intervals relevant to attentional effects are shown to depend on the dynamics
governing the evolution of the introduced length scale.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Attention can be regarded as a process to reduce variability in
the coincidence between expected and actual sensory input. The
review offered by Ghajar and Ivry (2009) explains that individuals
‘pay attention’ by predicting and successfully synchronizing with
selective inputs. A network involving prefrontal cortex (PFC),
inferior parietal lobe (IPL) and cerebellum can be the key to
predictive neural activity. This idea was favoured by the results
of works like (Mantini, Perrucci, Del Gratta, Romani, & Corbetta,
2007), where EEG and fMRI were combined to study the dynamic
baseline functional architecture of the human brain, focusing on
the resting-state. Rather than stabilizing at an uniform level,
brain activity fluctuates within definite spatiotemporal patterns,
and this spontaneous ongoing oscillatory activity depends on the
dynamic interplay between distinct functional networks.

As remarked, attention also engages the cerebellum, which
seems to be playing a crucial role for achieving the necessary
synchronization. Using coherence analysis methods, the degree
of cerebellar activation has been found to correlate with that
observed in dorsolateral prefrontal and inferior parietal cortices
(Allen et al., 2005). The capabilities of the cerebellum may extend
beyond the synchronization of actions and sensory consequences,
including the category of abstract predictions (Schmahmann

∗ Correspondence to: Department of Cognition, Development and Educational
Psychology, Faculty of Psychology, University of Barcelona, Pg. Vall d’Hebron 171,
08035 Barcelona, Spain.

E-mail address: hans.super@icrea.cat (H. Supèr).

& Sherman, 1998). At the same time, there is an alternative
framework where attention is viewed as an effect rather than a
causal agent (Krauzlis, Bollimunta, Arcizet, &Wang, 2014; Krauzlis,
Lovejoy, & Zénon, 2013). In that context, attention arises as a
functional consequence of circuits centred on the basal ganglia
involved in decision making.

Oscillatory neural activity is induced when sensory signals are
properly processed in the sensory system. Therefore, attention
has to be deeply related to oscillation modes. Global oscillations
of finite coherent time may exist in a number of situations.
Particularly, recurrent inhibition plays an important role in the
generation of synchronized oscillations (see e.g. MacLeod &
Laurent, 1996 and Whittington, Traub, & Jefferys, 1995). In fact,
oscillation periods depend on the synaptic times and on the
characteristics of the internal inputs. Isolated neurons receive
a large amount of background synaptic noise and generate
Poisson-like spike trains. Brunel and Hakim (1999) considered
populations of such neurons randomly connected by delayed
synaptic interactions, and illustrated the working of sparsely
connected inhibitory cells for a network made of integrate-and-
fire units. Instead, for our neurons we shall be using Izhikevich’s
‘simple model’ (Izhikevich, 2007). Rhythmogenesis is often based
on coupled inhibitory neurons capable of rebound excitations (see
e.g. Selverston & Moulins, 1985) and one of the advantages of
Izhikevich’s model is its power to reproduce rebound effects. Fast
global oscillation takes place when all neurons fire irregularly
with an average individual frequency lower than the population
(global) frequency. The stability analysis for that phenomenonwas
provided in Brunel and Hakim (1999) (see also Brunel & Hakim,
2008).
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Attentive states typically involve oscillatory regimes trying to
anticipate some magnitude of the expected stimulus. Extensive
reviews of the oscillations occurring in the cerebral cortex during
cognition were offered by Buzsáki (2006), Wang (2010) and, from
the viewpoint of synchrony,many computational issues connected
to the binding problem were discussed in Wang (2005) (see also
Quiles, Wang, Zhao, Romero, & Huang, 2011 and Terman & Wang,
1995). Reviews about other aspects of attention were given by
Carrasco (2011), Desimone and Duncan (1995) and Itti and Koch
(2001). Particularly, on the subject of attention, synchrony and
coherence, see Börgers, Epstein, andKopell (2008), Fries (2005) and
Fries, Reynolds, Rorie, and Desimone (2001), or the experimental
evidence – e.g. Bosman et al. (2012) – indicating that selective
synchronization renders the behaviourally relevant input effective.

In the present work we are making an attempt to model the
degree of readiness in an attentional task depending on a changing
length scale, i.e., a single variable with dimension of length which
evolves in time. Our considered stimuli are circles and the internal
states of the system are represented by the radius of a visual
receptive field (RF), which is also circular and evolves in time. Next,
going on to the inner processing units (neurons), time oscillation
and synchrony properties provide pictures of their global states,
and may reflect the variations which take place during a cognitive
task, including the case of stimulus detection.

The behaviour of our presented network is, to a good extent,
consistent with existingmodels, like the ones based on pyramidal-
interneuron interactions (see e.g. Bibbig, Traub, & Whittington,
2002, Traub, Whittington, Stanford, & Jefferys, 1996 and refs
therein), which have proved to be remarkably successful. A
further feature in our scheme is the modelling of interareal
inhibitory connections with incidence on the properties of the
gamma rhythm. Unfortunately, we cannot resort to known data for
supporting the existence of these connections (although, in other
contexts, interareal inhibition appears to bemorewidespread than
initially guessed Iurilli et al., 2012). At any rate, the question is not
so critical, as it can be argued that our two nominal areas simply
stand for different cell classes in a common region (see alternative
version in Section 2.5).

Among the proposed theories, Ardid,Wang, and Compte (2007)
offered an encompassing scheme about attentional processing
and coherent oscillation (which partly draws on Compte, Brunel,
Goldman-Rakic, & Wang, 2000). In particular, it explained how
suppressed activity can be an indirect effect of biased competition.
Moreover, Ardid, Wang, Gomez-Cabrero, and Compte (2010)
examined sparsely synchronized oscillation regimes and went
further by reconciling rate and synchronization effects, studying
interareal coherence and showing how it gives rise to modest
enhancements of rate modulations as well as attention-specific
enhancements of synchrony. There are a few ways in which our
scheme resembles theirs. The principle of sparse synchronization
is the main point. Regarding structures, our first model basically
consists of two layers with nonsymmetrical two-way connections
between them, but – unlike what happens in their set-up – lateral
(recurrent) connections are not considered. Thus, the essential
ingredient is the combination of feed-forward and feedback
interactions between two areas, say ‘temporal’ and ‘frontal’.
However, the aforementioned ‘alternative’ version consists of a
single layer with two cell-types and recurrent interactions. Unlike
in Ardid et al. (2007), our sensory inputs are not orientation-coded,
as we are not dealing with feature-coded signals. Rather than that,
we wish to study the effect of raw size differences depending on
some suitably chosen parameter.

Our oscillating network and its dependence on a length scale
determined by the sensory input are described in Section 2.
Results of numerical simulations showing the different effects on
consolidation times are commented in Section 3. Section 4 includes
our discussion and ending remarks.

2. Model description

2.1. Receptive fields

As a convenient abstraction, we employ a pillbox-style RF – call
it fr –, which is a 2D object of the type

Pr(x, y) =

1, for x2 + y2 ≤ r2

0, elsewhere,
fr = NRF(Pr),

(1)

where x, y are rectangular coordinates and r is the circle radius. The
NRF operation removes themean and divides by the sumof squares
afterwards, so that the resulting function canwork as a valid RF, i.e.,

Πr(x, y) = Pr(x, y)−
1

NxNy


x′,y′

Pr(x′, y′)

fr(x, y) =
Πr(x, y)

x′,y′
Π2

r (x′, y′)
.

(2)

The particular shape is unlikely to be very decisive, and we have
adopted the circular geometry for definiteness and simplicity. If
the current number of pixels (NxNy) allowed for sufficient space
resolution, the negative contribution in the first line of (2) should
tend to πr2 divided by the total area.

As our system requires variable r ’s, RF radii will change
according to their own ‘dynamics’. Instead of single r , for every
region we set a different radius rj(t), 1 ≤ j ≤ Nr , with an evolution
equation of the form

r ′j = −η Θ(m(rj)) (1−m(rj)),
1 ≤ j ≤ Nr ,

m(rj) = max
(x,y)


imj ∗ frj


(x, y)


,

(S ∗ T )(x, y) ≡

x′,y′

S(x+ x′, y+ y′) T (x′, y′).

(3)

Θ denotes the Heaviside step function. imj is the jth region of the
stimulus image Im and Nr indicates the number of regions. We
shall be dealing with Nr = 2 regions, namely, the left half and the
right half of the image. The η parameter can be regarded as an
adaptation rate. The larger the η value the quicker the adaptation;
thus, η may be related to attention or eye vergence (Solé Puig,
Pérez Zapata, Aznar-Casanova, & Supèr, 2013). Typical values are
of the order of 1r/tcue off, with 1r ≡ rinit − rfinal. The ∗ symbol
stands for the two-dimensional correlation product which is a
two-dimensional function of arguments (x, y) generically defined
in the third line of (3) (the sign changes x + x′, y + y′ −→
x − x′, y − y′ turn it into the usual convolution product). By
the application of NRF in (1), our RF’s are already in ‘normalized’
form when evaluating these products. Taking a ‘max’ means to
select the maximum of the obtained function when comparing all
the possible results in the considered region. Thus, although this
pooling takes place inside a specific domain, the outcome within
the region in question is actually nonlocal. When the current RF
circle has the same size as the stimulus, them variable in its region
will equal one and, therefore, the radiuswill no longer change. Note
that, by construction, the rj evolution law (3) implies feedback from
hypothetical units evaluatingm to the part updating r .

In the envisaged scenario the rj’s essentially decrease in time.
Thus, we start from a moderately large value, bigger than the
typical size of the expected stimuli, but not so large as to fill up
the region in question. Initially every rj amounts to n/4, being
n the layer side length in pixels, while the presented stimuli
have a radius of n/8 pixels. For the stimulated region rj(t) has a
moderate decay and asymptotically approaches the length yielding
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