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a b s t r a c t

Weight elimination offers a simple and efficient improvement of training algorithm of feedforward neural
networks. It is a general regularization technique in terms of the flexible scaling parameters. Actually, the
weight elimination technique also contains the weight decay regularization for a large scaling parameter.
Many applications of this technique and its improvements have been reported. However, there is little
research concentrated on its convergence behavior. In this paper, we theoretically analyze the weight
elimination for cyclic learning method and determine the conditions for the uniform boundedness of
weight sequence, and weak and strong convergence. Based on the assumed network parameters, the
optimal choice for the scaling parameter can also be determined. Moreover, two illustrative simulations
have been done to support the theoretical explorations as well.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Artificial neural networks have been used in many applications
such as machine learning, computational intelligence, image
analysis and pattern recognition (Haykin, 2009; Ripley, 2008).
Feedforward neural networks (FNNs) are one of the most popular
architectures due to their ability to approximate nonlinear
mappings. Furthermore, backpropagation (BP) is the most widely
used algorithm to train such networks with the gradient-based
methods (Rumelhart, Hinton, & Williams, 1986; Werbos, 1974).

There are two main modes of BP training: batch and incremen-
tal modes. Batch learning corresponds to the standard gradient
method, and weights are updated after the complete presentation
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of the training set. The incremental learning is a variation of the
standard gradient method, but weights are updated after the pre-
sentation of each training pair.

There are three main types of incremental learning: online,
almost-cyclic and cyclic (Heskes & Wiegerinck, 1996). They differ
by the ordering of training samples. For online learning, the
training samples are fed in a completely random order and no
epochs are discernible. In contrast, for cyclic learning, the training
sequence is fixed and identical within each training epoch after
it has been randomly determined before learning. Almost-cyclic
learning is an intermediate mode between online and cyclic
learning. It supplies samples in sequence that is randomized
separately for each training epoch.

Generalization is one of the important metrics to evaluate the
performance of a network. The BP training of neural networks can
be viewed as a ‘‘curve-fitting’’ model (Cherkassky & Mulier, 2007;
Friedman, 1994; Haykin, 2009). The objective here is to seek a
suitable nonlinear mapping for the input–output relationships, so
that the network is able to classify not only training samples but
also testing samples.

Adding a penalty term to the cost function is important to
improve the generalization on the test data. It is implemented by
minimizing the following total risk:

R(w) = Ec(w)+ λΦ[f (x,w)]. (1)
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The first term, Ec(w), is the standard error to ensure a good ap-
proximation for the training samples. The second term,Φ[f (x,w)],
is the complexity penalty, which imposes prior knowledge on the
optimization solutions. The penalization coefficient λ controls the
relative importance of the penalty term with respect to the stan-
dard error.

There are two main classes of penalty forms for neural
networks: nonparametric and parametric penalties (Girosi, Jones,
& Poggio, 1995). For nonparametric penalty, (1) evaluates the
trade-off between training and testing samples by using a
differential operator. By contrast, the parametric penalty deals
with the complexity directly by imposing constraints on the
training parameters. Its general form is

Φ[f (x,w)] = ∥w∥k , (2)

where ∥w∥k represents the k-norm of the weight vectorw.
Many existing BP learning algorithms can be considered as

special cases of this regularization method. Particularly, (2) is
referred to as the L0 regularizer when k = 0. When k = 1, it is
the L1 regularizer, which is also called the Lasso penalty. When
k = 2, it corresponds to the L2 regularizer, which represents the
well-known ridge regression or weight decay (Gupta & Lam, 1998;
Haykin, 1999; Leung, Tsoi, & Chan, 2001).

Smaller weights result in better generalization for the trained
networks even if they show similar performance on the training
set. Thus, to improve the generalization it is important to
study the boundedness of weights and convergence behavior of
a trained network from theoretical point of view. Because of
the nondifferentiable property of L0 and L1 regularizers, most
published results are focused on neural networks with L2 penalty
(Shao & Zheng, 2011; Wang, Wu, & Zurada, 2011, 2012; Zhang &
Wu, 2009).

The paragraphs below provide a review of recently published
works closely related to this paper. In Wu, Shao, and Li (2006), the
weak convergence andmonotonicity are provedwhich correspond
to the classical gradient descentmethod from optimization theory.
One of its main contributions (Wu et al., 2006) is that the
boundedness of the weights between input and hidden layers are
rigorously stated.

For online training, Zhang and Wu (2009) shows the weight
boundedness and convergence results for FNNs with the linear
output. An extension in Zhang, Wu, Liu, and Yao (2009) reaches
the same theoretical conclusions for the activation function of
output layer is the common sigmoid function. We note that the
convergence results of these papers are asymptotic convergence
with probability 1 due to the completely random ordering of
samples during training. Besides the convergence discussion on
FNNs, extended finite time convergence results have been studied
for the recurrent neural networks (Cao, Rakkiyappan, Maheswari,
& Chandrasekar, 2016; Liu & Cao, 2010; Liu, Cao, & Chen, 2010; Liu,
Dang, & Cao, 2010).

For cyclic learning, the deterministic convergence result has
been comprehensively studied in Xu, Zhang, and Jing (2009) and
Zhang, Xu, Huang, and Wang (2012) under mild constrains for
the learning rates. In Wang et al. (2012), the cyclic and almost-
cyclic learning with weight decay penalty (L2 regularizer) has been
studied under more relaxed conditions for training parameters.
Interestingly, the deterministic convergence has been in detail
proved in contrast to those probabilistic conclusions for online
learning.

Weight decay regularization constrains the size of weights and
penalizes large weights. Although the cost function for weight
decay penalty is smooth, the method does not result in sparse
networks and does not have a strong ability to effectively prune
hidden units.

An improved algorithm with weight elimination penalty has
been proposed in Weigend, Rumelhart, and Huberman (1991). It
tries to reduce the small weights to zero and then trims them.
This method is well suited for network pruning by eliminating
units which offer little or no benefit in evaluating the correct
output (Ennett & Frize, 2003; Frize, Ennett, Stevenson, & Trigg,
2001). Particularly, weight decay becomes a special case of weight
elimination when the scaling parameter is large enough.

More variants and applications ofweight elimination technique
have been demonstrated in Bebis, Georgiopoulos, and Kaspalris
(1996) Ennett and Frize (2003), Gupta and Lam (1998), Kuo, Wu,
and Wang (2002) and Leung et al. (2001) which display their good
performance. A particle swarm neural network was constructed
in Rakitianskaia and Engelbrecht (2014) with weight elimination
penalty. Swarm behavior had been detailedly studied and showed
that weight elimination resulted in smaller networks and more
convergent swarms.

The aim of this paper is to present a comprehensive study
and theoretical analysis of weight elimination in cyclic learning
of neural networks. The main contributions of this paper are as
follows:

(1) In addition to the qualitative discussion inWang, Zurada, Wang,
Wang, and Xie (2014) of the scaling parameter q, its optimal
choice has been rigorously proved.

In Wang et al. (2014), the boundedness of the weight
sequence in batch learning mode has been studied. However,
results are in a qualitative rather than a rigorous proof, and do
not address the theoretical analysis of convergence. To obtain
the optimal scaling parameter, this paper investigates in detail
a specific quartic function, and themonotonicity and concavity
of its roots.

(2) The boundedness of the weight sequence has been guaranteed for
the weight elimination in cyclic learning.

Overfitting is a crucial problem in training neural networks.
Generally speaking, a trained network with smaller weights
performs better generalization and avoids overfitting. To
achieve this goal, we have evaluated how to restrain the
magnitude of weights. In the paper we state the uniform
boundedness of weight sequence under some reasonable
assumptions.

(3) A comprehensive study of the weak and strong convergence re-
sults for weight elimination in cyclic learning has been demon-
strated.

The weak convergence means that the norm of gradient of
the objective function with respect to the weight vectors ap-
proaches zero as the iterations continue. The strong conver-
gence occurs when the weight updating sequence approaches
a fixed point.

(4) Numerical simulations demonstrate the advantages of weight
elimination in comparison with the weight decay method. In ad-
dition, the theoretical conclusions are verified by the simulations.

An illustrated experiment of function regression shows the
merits of weight elimination method. The performance of
trained network based on weight decay and weight elimina-
tion penalties have been compared in terms of pruning ability
and generalization. Consequently, the uniform boundedness of
weight sequence and convergence behavior have been clearly
graphed.

The rest of the paper is as follows: the weight elimination
algorithm for cyclic learningmode has been introduced in the next
Section. The main results are presented in Section 3 under some
mild assumptions for activation functions and learning rates. In
Section 4, the detailed proofs of the main results are presented
based on some fundamental lemmas. Two simulations in Section 5
illustrate the main results of this paper. Finally, we conclude with
some useful remarks in Section 6.
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