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a b s t r a c t

This paper addresses the exponential stability of switched cellular neural networks by using the mode-
dependent average dwell time (MDADT) approach. This method is quite different from the traditional
average dwell time (ADT) method in permitting each subsystem to have its own average dwell time.
Detailed investigations have been carried out for two cases. One is that all subsystems are stable and the
other is that stable subsystems coexist with unstable subsystems. By employing Lyapunov functionals,
linear matrix inequalities (LMIs), Jessen-type inequality, Wirtinger-based inequality, reciprocally convex
approach, we derived some novel and less conservative conditions on exponential stability of the
networks. Comparing to ADT, the proposed MDADT show that the minimal dwell time of each subsystem
is smaller and the switched system stabilizes faster. The obtained results extend and improve some
existing ones. Moreover, the validness and effectiveness of these results are demonstrated through
numerical simulations.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Since the seminal work by Chua and Yang (1988a, 1988b),
cellular neural networks (CNNs) have been intensively studied
(see, for example, Arik and Tavsanoglu (2000), Yuan, Cao, and
Deng (2006) and the references therein). This is partially due
to the successful hardware implementations for them and their
various applications in associative memory, moving object speed
detection, pattern classification, fixed point computation, image
processing and so on. These applications rely crucially on the
stability of the networks (Arik & Tavsanoglu, 2000; Huang &
Cao, 2011b; Huang, He, & Wang, 2008; Huang, Huang, & Liu,
2005; Li & Rakkiyappan, 2013; Liu, Lu, & Chen, 2014; Lu, Ho,
& Cao, 2011; Rakkiyappan, Chandrasekar, Lakshmanan, & Park,
2014; Rakkiyappan, Zhu, & Chandrasekar, 2014; Yuan et al., 2006).
Therefore, a necessary step for practical design of CNNs is the
analysis of their dynamic behaviors. In fact, these theoretical
results not only improve our understanding of the system’s
dynamics but also are important complements to experimental
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and numerical investigations using analog circuits and digital
computers.

During hardware implementation, time delays occur due to the
finite switching speed of the amplifiers and communication time
and hence it is of great importance to incorporate delays in neural
networks (Arik&Tavsanoglu, 2000; Cao&Wang, 2005;Hu&Wang,
2015; Huang & Cao, 2011b; Lu et al., 2011; Tang, Gao, Zhang, &
Kurths, 2015; Wang, Zhang, & Jiang, 2011; Wang, Zhang, & Yu,
2009a, 2009b; Zhang & Shen, 2014; Zhang, Shen, Yin, & Sun, 2015;
Zhang, Tang, Miao, & Du, 2013). A time delayed cellular neural
network (DCNNs) is as follows,

u̇i(t) = −aiui(t) +

n
j=1

bijgj(uj(t)) +

n
j=1

cijgj(uj(t − τ)) + Ji, (1)

where t ≥ 0, i = 1, 2, . . . , n. Here n denotes the number of units
in the network; ui is the voltage or potential of the ith cell; ai
denotes the rate with which the cell resets its potential to the
resting state when isolated from other cells and external inputs,
bij and cij denote the connection and delayed connection weight
coefficients of the neurons; gj is the nonlinear output function; Ji
denotes the ith component of an external input source; τ denotes
the time delay. Although this model could simulate some simple
practical situations when the number of cells is not large, it has
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been well recognized that neural networks usually have a spatial
extent due to the presence of amultitude of parallel pathwayswith
a variety of axon sizes and lengths. Therefore, it is more reasonable
to introduce continuously distributed delays. For neural network
models with distributed delays, we refer readers to Huang and
Cao (2011b) and Principle, Kuo, and Celebi (1994). Introducing
distributed delays into (1) and generalizing the constant delay into
time-varying delay, we can obtain the following modified model,

u̇(t) = −Au(t) + Bg(u(t)) + Cg(u(t − τ(t)))

+D
 t

t−h(t)
g(u(s))ds + J, (2)

where u(t) = (u1(t), u2(t), . . . , un(t))T ∈ Rn is the state vector
of the neurons; A = diag(a1, a2, . . . , an), B = (bij)n×n, C =

(cij)n×n,D = (dij)n×n, g(u(t)) = (g1(u1(t)), g2(u2(t)), . . . , gn(un

(t)))T .J = (J1, J2, . . . , Jn)T , τ (t) and h(t) are non-negative time-
varying functions with 0 6 τ(t) 6 τN , 0 6 h(t) 6 hN , for some
positive constants τN and hN .

Generally, DCNNs are large-scale nonlinear systems consisting
of many subsystems. When subsystems switch, existing links
between neurons may be cut off and new ones could be
established. This would quickly change the connection topology
of the system. To obtain a deep and clear understanding of
the dynamics of these complex systems, one usually investigate
the so called switched DCNNs. Each switched neural networks
is composed of a family of continuous-time or discrete-time
subsystems and there is a rule orchestrating the switching among
the subsystems (Huang, Qu, & Li, 2005). A switched DCNNs
associated with (2) is

u̇(t) = −Aσ(t)u(t) + Bσ(t)g(u(t)) + Cσ(t)g(u(t − τ(t)))

+Dσ(t)

 t

t−h(t)
g(u(s))ds + J, (3)

where σ(t) : [0, +∞) → Σ = {1, 2, . . . ,N} is the switching
signal, which is a piecewise constant and right continuous function
of time t,N is the number of subsystems.

The stability problem of switched systems under controlled
switching signals has always been a hot topic. In practice, a class of
controlled switching signalswith restrictions on switching instants
is frequently encountered and considerable attention have been
drawn to such a type of switching called slow switching (Wu,
Shi, Su, & Chu, 2011). One way to specify slow switching is to
introduce a scalar and restrict the switching signalswith a property
that the switching times t1, t2, . . . satisfy ti+1 − ti > τ̄ for all i
belongs to Σ . In other words, all switching signals with intervals
between consecutive discontinuities are not smaller than τ̄ . The
scalar τ̄ is coined as the dwell time. In Hespanha andMorse (1999),
the concept of ‘‘dwell time’’ is extended to that of ‘‘average dwell
time’’ (ADT). It is shown that a similar result still holds when the
intervals of switching signals among consecutive discontinuities
are enlarged so that some intervals have lengths less than τa but
the average interval between consecutive discontinuities is not
less than τa. In the last few years, considerable efforts have been
devoted to the stability analysis of switched systems and various
sufficient conditions on stability have been derived by applying the
method of ADT (see Lian & Wang, 2015; Lu et al., 2011; Zhang &
Gao, 2010 and the references cited therein). A key step in ADT is to
construct a suitable Lyapunov functional, which usually is not an
easy job.

On one hand, ADT switching means that the number of
switches in a finite interval is bounded and the average dwell
time between consecutive switching is not less than a common
positive constant τa. It is obvious that ADT is independent of the
state of each subsystem. Since all subsystems are required to have

the same ADT and the individual properties of each subsystem
are neglected, it is inevitable to bring more conservative results.
On the other hand, although all the subsystems are stable, the
switched system may be unstable (Lian & Wang, 2015; Lou & Cui,
2008). In practice, switched systems with unstable subsystems
are inevitably encountered in real plant, for instance, sensor
faults or controller failure can lead to unstable subsystems (Lin &
Antsaklis, 2009; Zhao, Zhang, Shi, & Liu, 2012). So far, the majority
of existing work only considers switched systems consisting of
stable subsystems. Only few papers deal with switched systems
composed of both stable and unstable subsystems (Li, Zhao,
& Dimirovski, 2009; Long & Zhao, 2015; Zhai, Hu, Yasuda, &
Michel, 2001). When some unstable subsystems are included in
switched systems, it is hard to design the switching law such that
each unstable mode increases within an upper bound during its
activating period (Yang, Jiang, & Cocquempot, 2014). Moreover, for
practical complex systems, it may be difficult and unnecessary to
stabilize all subsystems (Long & Zhao, 2015; Yang et al., 2014).
How to stabilize switched nonlinear CNNs with both stable and
unstable subsystems is an interesting problem (Tang et al., 2015;
Zhang, Tang et al., 2013). The purpose of this study is to establish
conditions guaranteeing the exponential stability of such systems.
To achieve it, we shall develop themode-dependent average dwell
time method (MDADT). The idea of MDADT has been used to
study the stability properties of switched linear systems by some
researchers, amongwhom are Liu, Lian, and Zhuang (2015), Zhang,
Xie, Zhang, and Gang (2014) and Zhao et al. (2012).

The main contribution of this paper lies in the following two
aspects. In the first place, to the best of our knowledge, this
is the first time to develop the method of MDADT to switched
nonlinear CNNs systemswith time-varying delay. To a large extent,
the existing literature on theoretical studies of switched neural
networks systems is predominantly concerned with ADT and all
subsystems required to be stable. Literature dealing with the
switchedneural networks systemswhen stable subsystems coexist
with unstable subsystems seems to be scarce. In the second place,
by applying the MDADT method, every state can be separated
from the whole system among the operation time. Whereas ADT
require all subsystems have the samedwell time and the individual
properties of each subsystem are neglected, it is inevitable to
bring some restriction. The advantages of the proposed MDADT
can be characterized by two sides: the minimal dwell time of each
subsystem is smaller and the switched system stabilizes faster.
Therefore, it is obviously that MDADT is better than ADT and the
mechanism of MDADT compensates the shortage of ADT approach
greatly when we derive the conditions for stability.

The remainder of this article is organized as follows. In
Section 2, we present some preliminaries and the assumptions.
In Section 3, sufficient conditions are derived for the exponential
stability of the switched DCNNs by using the reciprocally
convex approach and techniques of Lyapunov functional, MDADT
method, and linear matrix inequalities (LMI). In Section 4,
numerical examples are provided to demonstrate the validness
and effectiveness of the obtainedmain results. Thepaper concludes
with some remarks in Section 5.

2. Preliminaries

In this section, we state some notations, definitions and
lemmas. In the sequel, R denotes the set of all real numbers, Rn

denotes the ndimensional Euclidean space,Rn×m denotes the set of
all n×m real matrices, In represents the n×n dimensional identity
matrix, and 0n represents the n × n dimensional zero matrix. For
a square matrix, AT denotes the transpose of A, A > 0 (< 0)
means A is positively (negatively) definite, and λmin(A) and λmax(A)
respectively represent the minimum eigenvalue and the maximal
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