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a b s t r a c t

Some complex data types are capable of modeling data variability and imprecision. These data types are
studied in the symbolic data analysis field. One such data type is interval data, which represents ranges
of values and is more versatile than classic point data for many domains. This paper proposes a new
prototype-based classifier for interval data, trained by a swarm optimization method. Our work has two
main contributions: a swarmmethodwhich is capable of performing both automatic selection of features
and pruning of unused prototypes and a generalized weighted squared Euclidean distance for interval
data. By discarding unnecessary features and prototypes, the proposed algorithm deals with typical
limitations of prototype-based methods, such as the problem of prototype initialization. The proposed
distance is useful for learning classes in interval datasetswith different shapes, sizes and structures.When
compared to other prototype-based methods, the proposed method achieves lower error rates in both
synthetic and real interval datasets.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Classic data are usually defined as vectors of quantitative or
qualitative variables. Due to this representation, classic data anal-
ysis is not able to satisfactorily deal with variability or uncertainty
of complex data. Based on this motivation, symbolic data analysis
(SDA) introduced a number of representations for data types that
better represent data variability, such as intervals, histograms, lists
of values, among others (Diday & Noirhomme-Fraiture, 2008). The
most common of these data types is the interval data. Intervals nat-
urally arise from the description of ranges of values, such as daily
temperature variation, daily stock prices, among others (Bock &Di-
day, 2000).

A significant amount of research has been devoted to interval
data in the last decade, resulting in both unsupervised (Costa,
Pimentel, & Souza, 2013; de Almeida, Souza, & Candeias, 2012;
Hajjar & Hamdan, 2011; Hamdan & Hajjar, 2011; Pimentel, da
Costa, & Souza, 2011; Pimentel & Souza, 2012) and supervised
methods (D’Oliveira, De Carvalho, & Souza, 2004; Mali & Mitra,
2005; Roque, Maté, Arroyo, & Sarabia, 2007; Rossi & Conan-guez,
2002; Silva & Brito, 2006; Silva Filho & Souza, 2012, 2013; Souza,
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Queiroz, & Cysneiros, 2011). In thiswork, we focus on investigating
prototype and distance-basedmethods for classification of interval
data. These methods have many advantages, such as metric
versatility, diversity of training procedures and domain modeling
ability.

In our work, we address three different issues concerning
prototype-based classification methods for interval data. The first
issue is related to the adopted distance function. In De Carvalho,
Brito, and Bock (2006), the authors proposed the first distance
function for intervals, which was based on the squared Euclidean
distance. Despite its novelty at that time, this distance could only
model spherical subregions of data, that is, it assumed that features
have similar scales and dispersions. In order to overcome this lim-
itation, Silva Filho and Souza (2012) extended the learning vector
quantization (LVQ) method to interval data (the WILVQ method)
and proposed a weighted distance that considers different feature
dispersions in subregions of data modeled by a prototype. In ad-
dition, Silva Filho and Souza (2013) proposed the weighted fuzzy
learning vector quantization (WFLVQ), in which the weighted dis-
tance is extended to model classes with varying sizes, shapes and
structures, resulting in better classification performance compared
to previous work which adopted non-adaptive distances.

The second issue of prototype-based methods addressed in our
work is the local minima problem due to non-optimal prototype
initialization, i.e., the quality of these methods depends on a
well-placed set of prototypes. Weighted algorithms (Silva Filho &
Souza, 2012, 2013) have obtained better prototype placement, but
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they still can benefit from optimization of prototype initialization.
One way to tackle this issue is to employ swarm optimization
methods to prototype selection, which has been successfully
done for classic point data in different prototype-based classifiers
(Cervantes, Galvan, & Isasi, 2009; De Falco, Della Cioppa, &
Tarantino, 2007; Dilmac&Korurek, 2013; Szabo&de Castro, 2010).
Swarm techniques can also be useful to automatically find the
number of prototypes for a dataset (Cervantes et al., 2009; Szabo
& de Castro, 2010) and prune unnecessary prototypes. Research
has yet to be done on prototype-based classifiers for interval
data, which can also benefit from the advantages of swarm-based
algorithms.

Finally, the third issue addressed in our work is the selection
of relevant features in prototype-basedmethods. Feature selection
is commonly a useful mechanism to achieve better classification
performance. As with prototype selection, feature selection can
also be treated as an optimization task. Many swarm-based
algorithms for point data have performed automatic feature
selection in classification (Ghamisi & Benediktsson, 2015; Ghamisi,
Couceiro, & Benediktsson, 2015; Lin, Zhang, & Hung, 2014;
Nakamura et al., 2012), although none of these works deal with
prototype-based classifiers. Therefore, this is an open subject. For
interval data, in turn, existing prototype-based classifiers (Silva
Filho & Souza, 2012, 2013) use all available features in a dataset
in order to build a model. It is expected that these classifiers can
also benefit from automatic feature selection.

Motivated by the three issues above, a new prototype-based
classifier was proposed to: (i) model classes in a flexible way, by
employing a new adaptive distance; (ii) be robust against poor
prototype initialization and unused prototypes; and (iii) perform
automatic feature selection. As explained before, the adaptive
distance for interval data adopted by the WFLVQ method (Silva
Filho & Souza, 2013) has shown to be more effective compared
to non-adaptive distances. Despite its advantages, this distance
still has some limitations. It suffers from information loss because
its weights are calculated separately. Additionally, it makes no
distinction between prototypes that affect many instances and
prototypes that are far away from their affected instances, which
are two very different scenarios. Therefore, the first contribution of
the current work is a newweighted Euclidean distance for interval
data that overcomes these limitations.

In order to deal with prototype and feature selection, the
prototype-based classifier is trained by a recently proposed
hybrid swarm optimization method: the velocity-based artificial
bee colony algorithm (VABC) (Imanian, Shiri, & Moradi, 2014).
This method combines the advantages of both particle swarm
optimization (Eberhart & Kennedy, 1995; Kennedy & Eberhart,
1995) and artificial bee colony (Karaboga & Basturk, 2007) to avoid
local minima and to reach better solutions. The VABC was adapted
in the proposed prototype-based classifier to adequately deal
with interval data. Additionally, we investigated newmechanisms
to remove unused prototypes, which can affect the learning
performance of prototype-based classifiers as well.

In our experimental analysis, we compared the proposed
method toWFLVQ and to three prototype-based classifiers trained
by different versions of swarm-based algorithms (De Falco et al.,
2007; Imanian et al., 2014; Zhang, Xiong, & Zhang, 2013).
Experiments confirmed the usefulness of the proposed method:
it shows the best overall classification error rate, with small
standard deviations (which relates to avoiding local minima),
removes unnecessary prototypes and is able to select features in
a meaningful way.

The remainder of this work is organized as follows. Sections 2
and 3 briefly review the algorithms the current work is based on.
Section 4 describes the new classifier. Experiments using synthetic
and real interval datasets are presented in Section 5. Finally, Sec-
tion 6 presents final comments and suggestions for further re-
search.

2. Velocity-based artificial bee colony

Swarm optimization algorithms are known for their ability
to escape from local minima, which makes them very versatile
(Izakian & Abraham, 2011). There are many different types of
swarm-based methods, but the current work is based on a
combination of particle swarm optimization (PSO) (Eberhart &
Kennedy, 1995; Kennedy & Eberhart, 1995) and artificial bee
colony (ABC) (Karaboga & Basturk, 2007), called velocity-based
artificial bee colony (Imanian et al., 2014).

Both PSO and ABC have shown good optimization results and
have been adopted in many applications, but they have their own
limitations. In the case of PSO, if the global best particle falls into a
local minimum, the algorithm might not be able to avoid moving
the other particles in that direction, reaching a badly optimized
solution. By abandoning stagnated food sources, ABC may be able
to avoid this scenario. On the other hand, ABC does many small
adjustments to a food source before abandoning it, whichmay lead
to bad exploitation (Imanian et al., 2014). VABC was proposed to
overcome these limitations, by combining the strengths of both
ABC and PSO.

As the ABC algorithm, VABC consists of food sources, which
encode solutions, and three bee types: employed, onlooker and
scout bees. All food sources are initialized by scout bees. Let SN be
the number of food sources and let the vector X⃗l, (l = 1 . . . SN), be
a solution to the optimization problem. Each X⃗l contains p variables
(Xlj, j = 1 . . . p), which must be tuned to optimize (minimize or
maximize) an objective function f (X⃗l). After the solution vectors
are initialized, employed bees will feed near existing food sources,
which is performed according to Eq. (1).

X ′lh = Xlh + φ ∗ (Xlh − Xkh), (1)

where X⃗l is the memorized food source, X⃗k is a randomly selected
food source, which is not the same as X⃗l, h is a randomly selected
variable and φ is a random number within the range [−1, 1]. Then,
the fitness value of the new food source X⃗ ′ l is calculated. The bee
will memorize either X⃗l or X⃗ ′ l, based on a greedy selection.

After the employed bees finish their search, they pass the fitness
information of the food sources to the onlooker bees. Based on this
information, each food source has a probability pl of being chosen
by an onlooker bee. This probability is calculated by Eq. (2), based
on the fitness value f (X⃗l).

pl =
f (X⃗l)

SN
k=1

f (X⃗k)

. (2)

In VABC, each onlooker bee will choose a food source X⃗k, based
on these probabilities, and will try to find a better food source X⃗ ′k
by employing the velocity-based particle update equations of PSO
(see Eqs. (3) and (4)). The fitness value of the new food source X⃗ ′k
is calculated and the onlooker bee will memorize either X⃗k or X⃗ ′k,
based on a greedy selection.

V⃗k(t + 1) = ωV⃗k(t)+ (c1r1) ∗ (pbestk(t)− X⃗k(t))
+ (c2r2) ∗ (gbest(t)− X⃗k(t)), (3)

X⃗k(t + 1) = X⃗k(t)+ V⃗k(t), (4)

where X⃗k(t) and V⃗k(t) are, respectively, the position and the
velocity of the kth particle/food source at instant t , ω is the inertia
value, c1 and c2 are acceleration coefficients, pbestk(t) is the best
position that the kth food source achieved until instant t , gbest(t)
is the best position achieved by the swarm until instant t and r1
and r2 are random numbers chosen from the interval [0, 1].
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