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ARTICLE INFO ABSTRACT
Article history: The semi-supervised support vector machine (S*VM) is a well-known algorithm for performing semi-
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supervised inference under the large margin principle. In this paper, we are interested in the problem
of training a SVM when the labeled and unlabeled samples are distributed over a network of
interconnected agents. In particular, the aim is to design a distributed training protocol over networks,
where communication is restricted only to neighboring agents and no coordinating authority is present.
Using a standard relaxation of the original S*VM, we formulate the training problem as the distributed
minimization of a non-convex social cost function. To find a (stationary) solution in a distributed
manner, we employ two different strategies: (i) a distributed gradient descent algorithm; (ii) a recently
developed framework for In-Network Nonconvex Optimization (NEXT), which is based on successive
convexifications of the original problem, interleaved by state diffusion steps. Our experimental results
show that the proposed distributed algorithms have comparable performance with respect to a
centralized implementation, while highlighting the pros and cons of the proposed solutions. To the date,
this is the first work that paves the way toward the broad field of distributed semi-supervised learning
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over networks.
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1. Introduction

Semi-supervised learning (SSL) algorithms are a family of tech-
niques for performing inference in the presence of both labeled
and unlabeled data (Chapelle, Scholkopf, & Zien, 2006). Among
them, in the binary classification setting the semi-supervised sup-
port vector machine (SVM) has attracted a large amount of atten-
tion over the last decades (Chapelle, Sindhwani, & Keerthi, 2008).
The S*VM is based on the idea of minimizing the training error
and maximizing the margin over both labeled and unlabeled data,
whose labels are included as additional variables in the optimiza-
tion problem. Since its first practical implementation in Joachims
(1999), inspired by previous work on transductive learning by
Vapnik (1998), numerous researchers have proposed alternative
solutions for solving the resulting mixed integer optimization
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problem, including branch and bound algorithms (Chapelle, Sind-
hwani, & Keerthi, 2006), convex relaxations (Chapelle & Zien, 2005;
Li, Tsang, & Kwok, 2013), convex-concave procedures (Fung &
Mangasarian, 2001), and others. It has been applied to a wide
variety of practical problems, such as text inference (Joachims,
1999), and it has given birth to numerous other algorithms, in-
cluding semi-supervised least-square SVMs (Adankon, Cheriet, &
Biem, 2009), and semi-supervised random vector functional-link
networks (Scardapane, Comminiello, Scarpiniti, & Uncini, in press).

In this paper, we are interested in designing algorithms for
solving the S*VM optimization problem, in the case where the
training data is distributed across a network of interconnected
agents (Scardapane, Wang, Panella, & Uncini, 2015). In the fully
supervised case, this is a well-known scenario, which has been
investigated extensively in multiple research fields, including
peer-to-peer (P2P) (Ang, Gopalkrishnan, Hoi, & Ng, 2013) and sen-
sor networks (Barbarossa, Sardellitti,& Di Lorenzo, 2014; Predd,
Kulkarni, & Poor, 2006), robotic swarms, and many others. In
all of these settings, the underlying network of agents is gen-
erally unstructured, and no centralized authority can coordinate
the overall process. Thus, distributed training algorithms are de-
signed based on simple local exchanges of information among
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neighboring agents. A large number of decentralized algorithms
have been developed for training a supervised SVM in such a dis-
tributed scenario (Forero, Cano, & Giannakis, 2010; Lu, Roychowd-
hury, & Vandenberghe, 2008; Navia-Vazquez, Gutierrez-Gonzalez,
Parrado-Hernandez, & Navarro-Abellan, 2006), and they are briefly
summarized in the next section.

To the best of our knowledge, however, there is a lack of
distributed training algorithms for the SSL case over networks.
Indeed, this problem has been addressed only for specific cases,
such as localization in a WSN (Chen, Wang, Sun, & Shen, 2011).
Nonetheless, as we argue in Fierimonte, Scardapane, Uncini, and
Panella (submitted for publication), there is a large number of
realistic applications where the agents can benefit from the
inclusion of additional unlabeled data in the training process. As
an example, consider a distributed medical application, where
multiple clinical institutions possess similar databases, but privacy
concerns do not allow them to share it with a centralized
institution (Clifton, Kantarcioglu, Vaidya, Lin, & Zhu, 2002). In
this case, labeled data is generally scarce, while each institution
has access to a large amount of unlabeled samples. Using
currently available distributed algorithms, however, would imply
discarding these unlabeled databases, resulting in a possible loss of
generalization accuracy.

To simplify our derivation, in this paper, we focus on the linear
S*VM formulation, whose decision boundary corresponds to an
hyperplane in the input space. It is known that non-linear decision
boundaries can be obtained with the use of kernel functions. In that
case, however, the resulting SVM model is expressed in terms of all
examples, which in a decentralized setting are distributed among
the different agents. This is a notoriously complex problem (Predd
et al., 2006), which in many contexts hinders the applicability of
the resulting algorithms. In an alternative publication (Fierimonte
et al.,, submitted for publication), we have explored the problem
of training a semi-supervised Laplacian SVM using a distributed
computation of the underlying kernel matrix. However, the
resulting algorithm requires a large amount of computational
and/or communication resources. The algorithms presented in this
paper, instead, can be implemented even on agents with stringent
requirements in terms of power, such as sensors in a WSN. At the
same time, limiting ourselves to a linear decision boundary can be
reasonable, as the linear S*VM can perform well in a large range of
settings, due to the scarcity of labeled data (Chapelle et al., 2008).

Specifically, starting from the smooth approximation to the
original S$*VM presented in Chapelle and Zien (2005), we show
that the distributed training problem can be formulated as the
joint minimization of a sum of non-convex cost functions. This is a
complex problem, which has been investigated only very recently
in the distributed optimization literature (Bianchi & Jakubowicz,
2013; Di Lorenzo & Scutari, in press). In our case, we build on
two different solutions. The first one is based on the idea of
diffusion gradient descent (DGD) (Di Lorenzo & Sayed, 2013;
Sayed, 2014a, 2014b), arisen from previous work in the context
of distributed filtering applications (Lopes & Sayed, 2008). The
main idea of DGD is to interleave gradient descent steps at every
node, with local averaging of the estimates. The resulting algorithm
leads to an extremely efficient implementation. Nevertheless,
since it is a gradient-based algorithm exploiting only first order
information of the objective function, it generally suffers from
slow practical convergence speed, especially in the case of non-
convex and large-scale optimization problems. Recently, it was
showed in Di Lorenzo and Scutari (in press), Facchinei, Scutari,
and Sagratella (2015) and Scutari, Facchinei, Song, Palomar,
and Pang (2014) that exploiting the structure of nonconvex
functions by replacing their linearization (i.e., their gradient) with
a “better” approximant can enhance practical convergence speed.
Thus, we propose a distributed algorithm based on the recently

proposed In-Network Successive Convex Approximation (NEXT)
framework (Di Lorenzo & Scutari, in press). The method hinges
on successive convex approximation techniques while leveraging
dynamic consensus (Zhu & Martinez, 2010) as a mechanism to
distribute the computation among the agents as well as diffuse
the needed information over the network. Both algorithms are
provably convergent to stationary points of the non-convex
optimization problem. Moreover, as shown in our experimental
results, NEXT exhibits a faster practical convergence speed with
respect to DGD, which is paid by a larger computation cost per
iteration.

To summarize, our main contributions with respect to the
current literature on distributed learning are two-fold. Firstly, to
the best of our knowledge, this is the first work dealing explicitly
with (fully) distributed implementations of semi-supervised
routines and, more specifically, semi-supervised SVMs, paving the
way to a large number of possible domains which can benefit from
the availability of these techniques. Additionally, the present work
is one of the first successful applications of optimization protocols
explicitly designed for distributed non-convex costs, while the
majority of works on distributed learning has focused on models
giving rise to convex optimization problems.

The rest of the paper is structured as follows. Section 2 goes
briefly over previous works on distributed SVMs in the fully
supervised case. Then, Section 3 introduces the S*VM model
together with the approximation presented in Chapelle and Zien
(2005). In Section 4, we first formulate the distributed training
problem for S*VMs, and subsequently we derive our two proposed
solutions. Then, Section 5 details an extensive set of experimental
results and, finally, Section 6 concludes the paper.

Notation

In the rest of the paper, vectors are denoted by boldface
lowercase letters, e.g. a, while matrices are denoted by boldface
uppercase letters, e.g. A. All vectors are assumed column vectors.
Symbol a; denotes the ith element of vector a, and A; the (i,
j) entry of the matrix A. The operator ||-||, is the standard L,
norm on an Euclidean space. Finally, the notation a[n] is used
to denote dependence with respect to a time-instant n in an
iterative procedure. Other notation is introduced in the text when
appropriate.

2. Related works

We start by briefly reviewing some works on distributed SVM
algorithms in the fully supervised case. Similar overviews can be
found in Scardapane, Wang, and Panella (in press, Section 2.1) and
Wang and Zhou (2012). Initial works in this field were sparked
by realizing that the set of support vectors represents an efficient
way of ‘compressing’ data to be sent among the neighbors. In
practice, this is complicated by the fact that each agent has no
principled way of knowing whether a specific example is a support
vector of the full problem. Thus, in Navia-Vazquez et al. (2006)
the real set of support vectors is approximated by a specific set
chosen a priori, whose weights are updated based on a least-
square procedure. On the contrary, Lu et al. (2008) solve the
problem considering the real set of support vectors, with assured
convergence in a finite number of steps. Both approaches, however,
are hindered by the necessity of sending the examples throughout
the network on a Hamiltonian cycle. The most efficient procedure
up-to-date is presented in Forero et al. (2010), where the problem
is recast as multiple convex subproblems at every node, and solved
with the use of the alternating direction method of multipliers
(ADMM), an efficient procedure for distributed optimization of
convex cost functions. Indeed, ADMM is among the most widely
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