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a b s t r a c t

Classification algorithms based on different forms of support vector machines (SVMs) for dealing with
interval-valued training data are proposed in the paper. L2-norm and L∞-norm SVMs are used for
constructing the algorithms. The main idea allowing us to represent the complex optimization problems
as a set of simple linear or quadratic programming problems is to approximate the Gaussian kernel
by the well-known triangular and Epanechnikov kernels. The minimax strategy is used to choose an
optimal probability distribution from the set and to construct optimal separating functions. Numerical
experiments illustrate the algorithms.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The binary classification problem can be formally written
as follows. Given n training data (examples, patterns) S =

{(x1, y1), (x2, y2), . . . , (xn, yn)}, in which xi ∈ Rm represents a
feature vector involving m features and yi ∈ {−1, 1} indices the
class of the associated examples, the task of classification is to
construct an accurate classifier c: Rm

→ {−1, 1} that maximizes
the probability that c(x) = yi for i = 1, . . . , n. Generally xi
may belong to an arbitrary set X, but we consider the special case
X = Rm for simplicity. One of the ways for classification is to find
a real valued separating function f (x,w, b) having parameters w
and b such that w = (w1, . . . , wm) ∈ Rm and b ∈ R, for example,
f (x,w, b) = ⟨w, x⟩ + b. Here ⟨w, x⟩ denotes the dot product of
two vectorsw and x. The sign of the function determines the class
label prediction or c(x). We also introduce the notation x(k)

i for the
kth element of the vector xi.

Most available classification algorithms assume that training
data are precise or point-valued. However, training examples in
many real applications can be obtained only in the interval form.
Interval-valued data stem from imperfection of measurement
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tools or imprecision of expert information, from missing data.
Interval data arise in situations such as recording monthly interval
temperatures in meteorological stations, daily interval stock
prices, etc. Another source of interval data is the aggregation of
huge data-bases into a reduced number of groups (Lima Neto &
de Carvalho, 2008). For example, suppose that ages of patients in
Hospital A are 56, 27, 36, 45; ages of patients in Hospital B are 51,
76, 82, 84. If we consider an aggregated training set about hospitals
in a city, then ages of patients may be represented in interval
form, for instance, Hospital A: [27,56]; Hospital B: [51,84]. It is
assumed here that we have only the aggregated information about
hospitals, but we do not have the initial ages in order to construct
a probability distribution over values of intervals. Therefore,
the main assumption related to the interval-valued training
data considered in the present paper is that a true probability
distribution over every interval is unknown, i.e., we have a case
of the total ignorance concerning the probability distribution in
the interval. The total ignorance means that there is absolutely
no information about probability distributions over intervals.
Simultaneously, the total ignorance concerning the probability
distribution means that arbitrary probability distributions can be
constructed over every interval.

The importance of the conditions stimulates to development
the corresponding models and algorithms. As a result, many
methods inmachine learning have been presented for dealingwith
interval-valued data (Ishibuchi, Tanaka, & Fukuoka, 1990; Nivlet,
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Fournier, & Royer, 2001; Silva & Brito, 2006). When we say about
the interval-valued data, we formally assume that there are again
two classes, i.e., yi ∈ {−1, 1}, but feature vectors xi are interval-
valued, i.e., xi ∈ Ai, i = 1, . . . , n. Here Ai = [a(1)

i , a(1)
i ] × · · · ×

[a(m)
i , a(m)

i ], i.e., a(k)
i ≤ x(k)

i ≤ a(k)
i , k = 1, . . . ,m; a(k)

i , a(k)
i are

bounds for values of the kth feature in the ith training example.
All available algorithms and models aimed for learning from

interval-valued data can be divided in five groups.
The first group consists of algorithms which are based on

the standard interval analysis for constructing the classification
and regression models (Angulo, Anguita, Gonzalez-Abril, & Ortega,
2008; Hao, 2009). In fact, these algorithms come to constructing
and computing some functions of intervals to get a set of models
in the form of interval-valued separating or regression functions.
Interesting similar models for dealing with interval-valued and
fuzzy observations in classification and regression are proposed
in papers Carrizosa, Gordillo, and Plastria (2007a, 2007b) and
Forghani and Yazdi (2014). However, these models as well as the
standard interval analysis are restricted by considering mainly the
linear case, i.e., a case when separating or regression functions are
linear.Moreover,many interval-valued parametersmay lead to too
large intervals of resulting functions.

The second group consists of algorithms which are based on
replacement of interval-valued observations by precise values
using some additional assumptions, for example, by taking middle
points of intervals (Lima Neto & de Carvalho, 2008). It should be
noted that many algorithms dealing with missing data impute
some precise values instead of missing ones (Garcia-Laencina,
Sancho-Gomez, & Figueiras-Vidal, 2010), i.e. they also can be
referred to as the second group. The replacement of interval-
valued observations by precise values can be successfully used
when intervals are not large and the area produced by the interval
intersections is rather small. However, if intervals are very large
and overlapping, then the replacement of intervals by point-valued
data may lead to large classification errors. Another difficulty
of using algorithms from the second group is interpretation of
classification or regression results. It is often difficult to justify
the obtained separating or regression functions in the decision-
theoretic framework.

The third group of algorithms uses a very interesting and
original idea to consider the distance measure between two
interval-valued data points because many classification and
regression methods, for example, the support vector machine
(SVM) with non-linear kernel functions, k-nearest neighbors,
deal only with distances between training data, but not with
the training examples themselves. By taking into account this
peculiarity of many methods, Do and Poulet (2005) proposed a
very simple method based on the replacement of the Euclidean
distance between two data points in the Gaussian kernel function
used in the SVM by the Hausdorff distance between two hyper-
rectangles produced by intervals from sample data. The method
can be used in classification as well as in regression analyses.
The main condition of its use is the assumption of the Gaussian
kernel (or the kernels based on the distance between points) in
the corresponding SVM. The Hausdorff distance also was used
in clustering with imprecise data, for example, Chavent (2004);
Chavent, de Carvalho, Lechevallier, and Verde (2006) proposed a
partitional dynamic clustering method for interval data based on
adaptive Hausdorff distances. A city-block distance function as the
distance of a special form for solving clustering problems under
interval-valued data was studied by de Souza and de Carvalho
(2004). Pedrycz, Park, and Oh (2008) exploited a concept of the
Hausdorff distance that determines a distance between some
information granule and a numeric pattern (a point in the highly
dimensional feature space) for constructing classifiers by interval
and fuzzy data. Schollmeyer and Augustin (2013) illustrated

that other distance measures have been successfully applied to
machine learning problems instead of the Hausdorff distance, in
particular, the authors (Schollmeyer & Augustin, 2013) proposed
another distance measure for solving regression problems under
interval data. Schollmeyer and Augustin (2013) argued that their
measure might be better in some problems because the Hausdorff
distance does notmatch points of two sets, but compares all points
of the two sets to each other.

It should be noted that the algorithms from the third group
are rather simple because they replace the interval-valued data by
precise distances. However, they have important obstacles for their
application. First of all, it is difficult to interpret the classification
or regression results. Second, by dealing with interval-valued data,
we usually implicitly or explicitly select a point in every interval
in accordance with some decision strategy, which can be regarded
as a ‘‘typical’’ point of the interval under the accepted decision
strategy. The method using the Hausdorff distance allows having
many different data points in intervals simultaneously, namely,
pairwise distances between three intervals may correspond to
different points in every interval. This implies that the same
interval is represented by its different precise values. Though, this
property may be useful sometimes. Another difficulty of using
the Hausdorff distance is again the justification of the obtained
algorithms in the decision-theoretic framework because we select
some points of intervals in fact without taking into account a
general aim of algorithms to minimize classification or regression
errors.

The fourth group consists of robust algorithms using probabilis-
tic constraints. These algorithm differ from the algorithms using
the point-valued representation of intervals. A binary linear clas-
sification algorithm which can be referred to the fourth group was
proposed by Ghaoui, Lanckriet, and Natsoulis (2003). The authors
develop a robust classifier by minimizing the worst-case value of
a given loss function over all possible choices of the data in the
multi-dimensional intervals. We have to mark out very interesting
algorithms dealing with interval-valued data whose key idea is to
derive convex constraints in the SVM involving the partial infor-
mation in the form of intervals (Ben-Tal, Bhadra, Bhattacharyya, &
Nath, 2011; Bhadra, Nath, Ben-Tal, & Bhattacharyya, 2009). These
algorithms use Bernstein approximation schemes for construct-
ing classifiers which are robust to interval-valued uncertainty in
examples. We have to point out here that the Bernstein approx-
imation utilizes both the support (bounds of intervals) and mo-
ment information (mean and variance) of random variables. This
is an additional information which may be unknown in many ap-
plications. The problem of constructing robust classifiers is posed
as a chance-constrained program which ensures that the uncer-
tain data points are classified correctly with high probability. Ben-
Tal et al. (2011) applied the idea of using Bernstein approximation
schemes to SVMs. It should be noted that a very clear and compre-
hensive survey of SVMs dealing with uncertain data is provided by
Wang and Pardalos (2014).

The fifth group consists of robust algorithms which are based
on using various forms of SVMs and consider robust strategies in
the decision-theoretic framework. The main distinctive feature of
the algorithms is to consider an interval of expected risk measures
produced by interval-valued learning data. One of the algorithms
was proposed byUtkin and Coolen (2011). However, this algorithm
uses a weak assumption which restricts its usage. According
to this assumption, the separating function f is monotone, for
example, linear, because its lower and upper bounds in this case
are determined only by the bounds of pattern intervals. However,
in spite of the restricted application of the algorithm, it looks
for ‘‘optimal’’ points to some extent of the expected classification
risk, but not for points of intervals of training data. This is an
important peculiarity of the algorithm. Similar approaches have
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