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a b s t r a c t

This paper considers the problem of exponential stability for switched memristive neural networks
(MNNs) with time-varying delays. Different frommost of the existing papers, we model a memristor as a
continuous system, and view switched MNNs as switched neural networks with uncertain time-varying
parameters. Based on average dwell time technique, mode-dependent average dwell time technique and
multiple Lyapunov–Krasovskii functional approach, two conditions are derived to design the switching
signal and guarantee the exponential stability of the considered neural networks, which are delay-
dependent and formulated by linearmatrix inequalities (LMIs). Finally, the effectiveness of the theoretical
results is demonstrated by two numerical examples.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Since the experimental prototyping of the memristor (Chua,
1971) was announced by the HP Lab (Strukov, Snider, Stewart,
& Williams, 2008), memristive neural networks (MNNs) have
been extensively investigated for their potential applications
in different fields such as combinatorial optimization, brain
emulation, knowledge acquisition and pattern recognition (Chen,
Li, Huang, Chen, & Wang, 2014; Itoh & Chua, 2009; Pershin &
Ventra, 2010). In particular, stability properties of such neural
networks play a significant role in their designs for solving
practical problems. For example, when a neural network is
aimed to solve some type of optimization problem, one should
guarantee that this neural network is globally asymptotically
stable. However, in the implementation of neural networks, time
delay is unavoidable due to finite switching speed of the amplifiers
and communication time. The existence of timedelays often causes
instability, divergence or oscillation in neural networks. A variety
of techniques have been developed to reduce the conservatism
of stability conditions, such as descriptor model transformation
approach (Fridman, 2001), improved bounding technique (Moon,
Park, Kwon, & Lee, 2001), free-weighting matrix theory (Wu, He,
She, & Liu, 2004), integral inequality technique (Huang, Cao, &
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Huang, 2005; Kwon, Lee, Park, & Cha, 2012). Using such methods,
considerable efforts have been devoted to stability of MNNs with
time delays (Guo, Wang, & Yan, 2013b; Hu & Wang, 2010; Wen,
Zeng, & Huang, 2012; Wu & Zeng, 2012).

On the other hand, neural networks sometimes have finite
modes that switch from one to another at different times
according to a switching law generated from a switching logic
(Tino, Cernansk, & Benukova, 2004). To describe the switching
phenomenon in neural networks, the so-called switched neural
networks have been proposed and the stability problems have
been considered in Tsividis (1989). Much attention has been paid
to switched neural networks due to their extensive applications
in many fields such as high-speed signal processing and artificial
intelligence (Brown, 1989). Generally speaking, it is difficult to
find a common Lyapunov functional to guarantee the stability
of a switched system for arbitrary switching signals. In order
to find a suitable switching signal to ensure the stability of a
switched system, many effective methods have been developed
to investigate the analysis and synthesis of switched systems with
or without time delay, such as dwell time method (Morse, 1996),
average dwell time method (Hespanha & Morse, 1999; Lian &
Zhang, 2011; Xin & Li, 2015), mode-dependent average dwell time
method (Wu, Shi, Su, & Chu, 2011; Zhao, Zhang, Shi, & Liu, 2012).

Motivated by the above discussion, it is interesting to consider
exponential stability of switched MNNs with time-varying delays.
To the best of our knowledge, there are few results on this topic.
Different from most of the existing papers (Guo, Wang, & Yan,
2013a; Guo et al., 2013b; Guo, Wang, & Yan, 2014; Hu & Wang,
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2010;Wenet al., 2012;Wu&Zeng, 2012),wemodel amemristor as
a continuous system, then MNNs are modeled as complicated, but
accurate continuous systems. For the sake of its dynamic analysis,
we choose thememristances as uncertain parameters, and the con-
tinuous systems are simplified as neural networks with uncertain
time-varying parameters. As a result, switched MNNs are mod-
eled as switched neural networks with uncertain time-varying pa-
rameters in this paper. In order to get delay-derivative-dependent
and delay-dependent criteria for the global exponential stability of
switchedMNNs, the Lyapunov–Krasovskii functional for each sub-
system may contain xT (t)Pkx(t),

 t
t−τ(t) e

β(s−t)gT (x(s))Qkg(x(s))ds,

and
 0
−τ

 t
t+θ

eβ(s−t)ẋT (s)Rkẋ(s) dsdθ .
The contribution of this paper includes: (1) switched MNNs are

modeled as switched neural networkswith uncertain time-varying
parameters, (2) the running time ratio for a switching signal is
developed, which improves the mode-dependent average dwell
time method, and (3) based on the multiple Lyapunov–Krasovskii
functionals, the free weighting matrix approach and the average
dwell time method, delay-dependent criteria for the global
exponential stability of switched MNNs are derived in the form of
LMIs.

The paper is organized as follows. In Section 2, the problem is
formulated for switched MNNs. In Section 3, sufficient conditions
for stability of switched MNNs are obtained with average dwell
time method and mode-dependent average dwell time method,
respectively. Section 4 gives two examples. Conclusions are drawn
in Section 5.

2. Preliminaries and problem formulation

In this section, mathematical models of memristors, MNNs and
switched MNNs are introduced. The following notations will be
used throughout this paper: I denotes the identity matrix with
appropriate dimensions; an asterisk (∗) represents a term that
is induced by symmetry; for a given matrix X , XT denotes its
transpose; λ1(P) and λn(P) denotes the maximal and minimal
eigenvalue of the positive matrix P , respectively.

2.1. Model of MNNs

Based on the simple mathematical model of the HP memristor
(Strukov et al., 2008), a complete flux-controlled model of
memristor is provided in Wang, Drakakis, Duan, He, and Liao
(2012):

M(ϕ) =


Roff , ϕ < c1
2kϕ + M2(0), c1 ≤ ϕ < c2

Ron, ϕ ≥ c2
(1)

where M(ϕ) denotes the memristance value, ϕ is the magnetic
flux though the memristor, Roff and Ron(Roff ≫ Ron) are the limit
values of the memristor resistance, and the constants k, c1, c2 are
determined by the memristor and its initial condition.

Using memristors to replace resistors in the circuit realization
of the connection links of neural networks, it will result in a neural
network called memristive neural network. By Kirchoff’s current
law, the equations of the ith neuronal states arewritten as follows:

φ̇1ij(t) = fj(xj(t)) − xi(t), j = 1, 2, . . . , n,
φ̇2ij(t) = gj(xj(t − τ(t))) − xi(t), j = 1, 2, . . . , n,

Ciẋi(t) = −


n

j=1


1

M1ij(φ1ij(t))
+

1
M2ij(φ2ij(t))


+

1
Ri


xi(t)

+

n
j=1

signijfj(xj(t))
M1ij(φ1ij)

+

n
j=1

signijgj(xj(t − τ(t)))
M2ij(φ2ij)

,

(2)

where fj, gj are the activation functions, τ(t) is the delay, xi(t) is
the voltage of the capacitance Ci, M1ij is the memristance between
the feedback function fj(xj(t)) and xi(t), M2ij is the memristance
between the feedback function gj(xj(t − τ(t))) and xi(t), φ1ij and
φ2ij are the fluxes thoughmemristorM1ij andM2ij respectively, and

signij =


−1, i = j;
1, i ≠ j, is the sign function.

Since the memristance M1ij and M2ij are bounded due to (1), to
reduce the complexity of systems (2), we choose the memristance
M1ij and M2ij as uncertain parameters, and view systems (2) as
uncertain continuous systems:

Ciẋi(t) = −


n

j=1


1

M1ij(t)
+

1
M2ij(t)


+

1
Ri


xi(t)

+

n
j=1

signijfj(xj(t))
M1ij(t)

+

n
j=1

signijgj(xj(t − τ(t)))
M2ij(t)

(3)

where M1ij(t) ∈ co{Ron, Roff } and M2ij(t) ∈ co{Ron, Roff }.
Denote

W1ij(t) =
1

M1ij(t)
, W2ij(t) =

1
M2ij(t)

,

di(t) =
1
Ci


n

j=1

(W1ij(t) + W2ij(t)) +
1
Ri


,

aij(t) =
signij

Ci
W1ij(t),

bij(t) =
signij

Ci
W2ij(t),

A(t) = (aij(t))n×n, B(t) = (bij(t))n×n,

D(t) = diag{d1(t), d2(t), . . . , dn(t)},

x(t) = [x1(t), x2(t), . . . , xn(t)]T ,

f (x) = [f1(x1), f2(x2), . . . , fn(xn)]T ,

g(x) = [g1(x1), g2(x2), . . . , gn(xn)]T ,

(4)

then the overall system (3) can be rewritten as

ẋ(t) = −D(t)x(t) + A(t)f (x(t)) + B(t)g(x(t − τ(t))) (5)

where W1ij(t) ∈ co{ 1
Roff

, 1
Ron

} and W2ij(t) ∈ co{ 1
Roff

, 1
Ron

}, i, j =

1, 2, . . . , n.
Since all the elements of D(t), A(t) and B(t) are linear with

regard to W1ij(t) and W2ij(t), then uncertain conditions of system
(5) can be written as follows

[D(t), A(t), B(t)] ∈ coΩ, (6)

where

Ω = {[Di, Ai, Bi
]|i = 1, 2, . . . , 22n2

}

=


[D(t), A(t), B(t)]|W1ij(t),W2ij(t) ∈


1

Roff
,

1
Ron


,

i, j = 1, 2, . . . , n


. (7)

Remark 1. By choosing the memristances of MNNs (2) as the
parameters, we convert the complex nonlinear systems (2) into
relative simple nonlinear system (5) with uncertain time-varying
parameters. We can use Lyapunov theory and LMI technique
to analysis the dynamical properties of MNNs such as stability,
passivity and synchronization. Note that the memristive model
(1) is continuous, therefore MNN model (5) is also continuous.
However, Hu andWang (Hu &Wang, 2010) viewed the memristor
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