
Neural Networks 80 (2016) 67–78

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Synthesis of recurrent neural networks for dynamical system
simulation
Adam P. Trischler a,∗, Gabriele M.T. D’Eleuterio b

a Maluuba Research, 2000 Peel Street, Montreal, Canada
b University of Toronto Institute for Aerospace Studies, 4925 Dufferin Street, Toronto, Canada

a r t i c l e i n f o

Article history:
Received 10 August 2015
Revised and accepted 5 April 2016
Available online 20 April 2016

Keywords:
Recurrent neural network
Dynamical system
Approximation
Attractor
Chaos
Nonautonomous system

a b s t r a c t

We review several of the most widely used techniques for training recurrent neural networks to approx-
imate dynamical systems, then describe a novel algorithm for this task. The algorithm is based on an
earlier theoretical result that guarantees the quality of the network approximation. We show that a feed-
forward neural network can be trained on the vector-field representation of a given dynamical system
using backpropagation, then recast it as a recurrent network that replicates the original system’s dynam-
ics. After detailing this algorithm and its relation to earlier approaches, we present numerical examples
that demonstrate its capabilities. One of the distinguishing features of our approach is that both the orig-
inal dynamical systems and the recurrent networks that simulate them operate in continuous time.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction and survey

Recurrent neural networks (RNNs) represent a large class of
computational models designed in analogy to the brain. What
distinguishes them from the better known feedforward neural
networks is the existence of closed cycles in the connection
topology; as a consequence of these cycles, RNNs may exhibit self-
sustained dynamics in the absence of any input (Lukoševičius &
Jaeger, 2009). Mathematically, RNNs are dynamical systems.

Not only is the brain characterized by massively recurrent
connectivity, but dynamical systems themselves are now a
mainstay of computational neuroscience. Persistent activity in
biological neural networks is posited to result from dynamical
attractors in neural state space (Amit, 1992), and dynamical
computation underlies a variety of models for information
processing and memory function in the brain (Afraimovich,
Rabinovich, & Varona, 2004; Eliasmith & Anderson, 2004; Kaneko
& Tsuda, 2003).

1.1. RNN training techniques

Motivated by these facts and other interests, various re-
searchers have developed techniques bywhich recurrent networks
can be trained to approximate dynamical systems.

∗ Corresponding author.
E-mail addresses: adam.trischler@maluuba.com (A.P. Trischler),

gabriele.deleuterio@utoronto.ca (G.M.T. D’Eleuterio).

One set of such techniques takes a discrete-time approach:
dynamical systems, whether continuous or discrete in time,
are approximated with discrete-time RNNs. This set includes
backpropagation through time (Werbos, 1990), real-time recurrent
learning (Williams & Zipser, 1989), the extended Kalman filter
(Feldkamp, Prokhorov, Eagen, & Yuan, 1998), reservoir computing
(Jaeger & Haas, 2004), and phase-space learning (Tsung & Cottrell,
1995).

Backpropagation through time (BPTT) adapts the standard
backpropagation algorithm (Rumelhart, Hinton, &Williams, 1988)
for feedforward networks to recurrent networks. BPTT works
by ‘‘unfolding’’ a network in time: identical copies of the RNN
are stacked in layers, and connections within the network are
redirected to obtain connections between subsequent copies.
Each layer represents the same network at a different step in
time. The result of this unfolding is a feedforward network
amenable to standard backpropagation. BPTT is probably the
most widely used method for RNN training and can be made
to perform very well with various modifications (e.g., stochastic
sample selection (Bottou, 2010) and the addition of measures for
computational efficiency and stability like momentum (Sutskever,
Martens, Dahl, & Hinton, 2013)). One common issue is that error
gradients shrink or expand exponentially over time because they
are multiplied repeatedly by copies of the same weight matrix.
This is referred to as the problem of vanishing and exploding
gradients. As a consequence, long-term memory effects are quite
difficult to train. This issue can be overcome with second-order
optimization techniques that use curvature information, such

http://dx.doi.org/10.1016/j.neunet.2016.04.001
0893-6080/© 2016 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.neunet.2016.04.001
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2016.04.001&domain=pdf
mailto:adam.trischler@maluuba.com
mailto:gabriele.deleuterio@utoronto.ca
http://dx.doi.org/10.1016/j.neunet.2016.04.001


68 A.P. Trischler, G.M.T. D’Eleuterio / Neural Networks 80 (2016) 67–78

as the popular Hessian-free (Martens & Sutskever, 2011), or by
modifying the network architecture. The Long Short-TermMemory
(LSTM) network, for example, features multiplicative gates and
linear units whose gradients are unity so that their values can
be remembered over many timesteps (Hochreiter & Schmidhuber,
1997).

Real-time recurrent learning (RTRL) computes a RNN’s exact
error gradient at every discrete timestep (Williams & Zipser,
1989). Differentiating the network equations by the weights
yields a discrete-time linear dynamical system with time-varying
coefficients, where the resulting partial derivatives of the network
state are the dynamical variables. Iterating through time for
the error gradients simultaneously with the network dynamics
provides the required weight adjustment. Although RTRL is
mathematically transparent, the computational cost for each
update step is O(n4), where n is the number of neurons. This
renders the scheme practicable only for very small networks on
the order of about ten neurons (Lukoševičius & Jaeger, 2009).

The extendedKalman filter (EKF) is a state estimation technique
for nonlinear systems derived by linearizing the original Kalman
filter about the current state estimate. It is a second-order
gradient-descent algorithm that uses curvature information from
the squared error surface. The pioneering work in adapting the
EKF to RNN training was done by Feldkamp et al. (1998) within
the domain of system identification. Here, the unknown network
weights are interpreted as the state of a dynamical system, and the
desired dynamical trajectory as a measurement of that state.

In reservoir computing (RC), a randomly recurrently connected
sea of neuron units, referred to as the reservoir, feeds forward to
a set of output units and may be driven by an input signal. The
reservoir functions as a dynamical system andmust exhibit what is
called the echo state property. This relates asymptotic properties of
the reservoir dynamics to the driving signal. Intuitively speaking,
the echo state property means that the reservoir asymptotically
eliminates any information from initial conditions (Lukoševičius &
Jaeger, 2009). The output units in RC may be made to approximate
prescribed dynamical trajectories by training only the output
weights that feed them (typically by a linear regression process);
the random recurrent connections within the reservoir remain
fixed. An issue with RC is that the random reservoir is, to date,
poorly understood from a theoretical standpoint (Lukoševičius &
Jaeger, 2009). Networks generated by our procedure in fact share
a structural relation to RC systems, which we shall discuss.

The phase-space learning method (PSL) of Tsung and Cottrell
(1995) takes a vector-field approach to RNN training that is
similar to our algorithm from a high-level perspective. PSL consists
of (1) embedding a dynamical trajectory to recover its phase-
space structure (this is an application of Takens (1981) theorem);
(2) generating local approximations of the underlying vector field
about the given trajectory; and (3) approximating the vector field
with a feedforward network. Thismethod transforms the recurrent
network problem into a feedforward one, as does ours. However,
the networks generated by our approach and that of Tsung and
Cottrell (1995) differ significantly. PSL networks are discrete in
time, and they also remain essentially feedforward even after
training. They do not contain a recurrently connected reservoir of
hidden neurons; recurrence only arises in piping network outputs
back to the input neurons.

As noted, these techniques train discrete-time RNNs.1,2

Discrete-time networks are simpler conceptually and easier to

1 A continuous-time EKF exists, but its application to the RNN training problem
requires continuous-time derivatives for the Jacobian.
2 Hermans and Schrauwen (2010) adapted reservoir computing to continuous

time.

train, and of course numerical simulations are carried out on
discrete-time digital computers. However, discrete-time systems
are of less interest to neuroscience than their continuous-time
counterparts since the brain is inherently continuous.3 It is also
well known that finite-difference equations can behave very dis-
tinctly from ODEs in some respects: e.g., chaos can occur in one-
dimensional finite-difference systems, while three dimensions are
required for chaos in continuous systems. This, along with the de-
sire to apply tools of functional analysis, motivated us to set our
RNNs within a continuous-time formalism. In our work, both the
original dynamical system and its recurrent-network approxima-
tion are modeled with ordinary differential equations (ODEs).

To our knowledge, the most widely used technique for training
continuous-time recurrent networks is the Neural Engineering
Framework (NEF) of Eliasmith (2005) and Eliasmith and Anderson
(2004). In this framework, the activities of a population of neurons
encode some input vector. Given this encoding, the original
stimulus vector can be approximately recovered by decoding the
population activities; this is accomplished by taking the inner
product of the activities with a set of decoding vectors. Decoding
vectors are determined by a least-squares method. Similarly,
approximate transformations of the original stimulus vectors can
be defined using a modified set of decoding vectors, referred to as
transformational decoders.

An interesting aspect of the NEF that bears some relation to the
RC approach is that the linear encoder weights are set randomly;
they are not trained. Contrary to typical backpropagation, error is
evaluated only at the output, based on the linear decoders; it is not
propagated back to assign credit or blame to the linear encoders.
In some ways this is advantageous: because errors need not
propagate through the neuron activation function, this function
need not be differentiable. In the NEF, both the activation function
and the transfer functions of its neurons are generic. For example,
the activation function can be continuous (sigmoidal) or spiking
(leaky integrate-and-fire).

There exist strong analogies between the NEF and our RNN
training technique, although the two methods spring from
different formalisms. We take as our starting point a theorem
from the continuous-time RNN literature that is not employed
by the NEF authors. Through it, we arrive at a procedure and
a class of networks which can be viewed as a special case of
the NEF. However, by starting from this theorem and tracing a
different route to the end procedure, we show that the special
case of networks we utilize is governed by theoretical bounds on
its performance. To our knowledge, this theoretical support for
(a special case of) the NEF was not known previously. We will
characterize the relation to the NEF mathematically in Section 4,
after detailing our procedure in Section 2.

1.2. The proposed RNN training procedure

Our algorithm for training RNNs to approximate prescribed
dynamical systems is based on a theoretical result of Funahashi and
Nakamura (1993). Theorem 1 therein states that any dynamical
system can be ‘‘approximated to arbitrary accuracy’’ by a recurrent
neural network. This theorem is an existence result; here, we will
present a constructive algorithm for obtaining the approximating
networks that Funahashi and Nakamura (1993) theorize.

In our approach, a feedforward neural network is first trained
on the vector-field representation of a given dynamical system
using standard backpropagation techniques. Then the trained

3 Although the brain operates on spike trains, the spikes themselves are best
modeled by ODEs, such as the Hodgkin–Huxley model.



Download English Version:

https://daneshyari.com/en/article/403784

Download Persian Version:

https://daneshyari.com/article/403784

Daneshyari.com

https://daneshyari.com/en/article/403784
https://daneshyari.com/article/403784
https://daneshyari.com

