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a b s t r a c t

Recently, dropout has seen increasing use in deep learning. For deep convolutional neural networks,
dropout is known to work well in fully-connected layers. However, its effect in convolutional and pooling
layers is still not clear. This paper demonstrates that max-pooling dropout is equivalent to randomly
picking activation based on a multinomial distribution at training time. In light of this insight, we
advocate employing our proposed probabilistic weighted pooling, instead of commonly used max-pooling,
to act as model averaging at test time. Empirical evidence validates the superiority of probabilistic
weighted pooling. We also empirically show that the effect of convolutional dropout is not trivial, despite
the dramatically reduced possibility of over-fitting due to the convolutional architecture. Elaborately
designing dropout training simultaneously in max-pooling and fully-connected layers, we achieve state-
of-the-art performance on MNIST, and very competitive results on CIFAR-10 and CIFAR-100, relative to
other approaches without data augmentation. Finally, we compare max-pooling dropout and stochastic
pooling, both of which introduce stochasticity based on multinomial distributions at pooling stage.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Deep convolutional neural networks (CNNs) have recently told
many success stories in visual recognition tasks and are now record
holders on many challenging datasets. A standard CNN consists of
alternating convolutional and pooling layers, with fully-connected
layers on top. Compared to regular feed-forward networks with
similarly-sized layers, CNNs have much fewer connections and
parameters due to the local-connectivity and shared-filter archi-
tecture in convolutional layers, so they are far less prone to over-
fitting. Another nice property of CNNs is that pooling operation
provides a form of translation invariance and thus benefits gen-
eralization. Despite these attractive qualities and despite the fact
that CNNs are much easier to train than other regular, deep, feed-
forward neural networks, big CNNs with millions or billions of pa-
rameters still easily overfit relatively small training data.

Dropout (Hinton, Srivastave, Krizhevsky, Sutskever, & Salakhut-
dinov, 2012) is a recently proposed regularizer to fight against
over-fitting. It is a regularizationmethod that stochastically sets to
zero the activations of hidden units for each training case at train-
ing time. This breaks up co-adaption of feature detectors since the
dropped-out units cannot influence other retained units. Another
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way to interpret dropout is that it yields a very efficient form of
model averaging where the number of trained models is exponen-
tial in that of units, and these models share the same parameters.
Dropout has also inspired other stochastic model averaging meth-
ods such as stochastic pooling (Zeiler & Fergus, 2013) and Drop-
Connect (Wan, Zeiler, Zhang, LeCun, & Fergus, 2013).

Although dropout is known toworkwell in fully-connected lay-
ers of convolutional neural nets (Hinton et al., 2012; Krizhevsky,
Sutskever, & Hinton, 2012; Wan et al., 2013), its effect in convolu-
tional and pooling layers is, however, not well studied. This paper
shows that usingmax-pooling dropout at training time is equivalent
to sampling activation based on amultinomial distribution, and the
distribution has a tunable parameter p (the retaining probability).
In light of this, probabilistic weighted pooling is proposed and em-
ployed at test time to efficiently average all possibly max-pooling
dropout trained networks. Our empirical evidence confirms the
superiority of probabilistic weighted pooling over max-pooling.
Like fully-connected dropout, the number of possible max-pooling
dropout models also grows exponentially with the increase of the
number of hidden units that are fed into pooling layers, but de-
creases with the increase of pooling region’s size. We also empir-
ically show that the effect of convolutional dropout is not trivial,
despite the dramatically reduced possibility of over-fitting due to
the convolutional architecture. Carefully designing dropout train-
ing simultaneously in max-pooling and fully-connected layers, we
report state-of-the-art results on MNIST, and very competitive re-
sults on CIFAR-10 and CIFAR-100, in comparisons with other ap-
proaches without data augmentation.
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As both stochastic pooling (Zeiler & Fergus, 2013) and max-
pooling dropout randomly sample activation based onmultinomial
distributions at pooling stage, it becomes interesting to compare
their performance. Experimental results show that stochastic pool-
ing performs between max-pooling dropout with different retain-
ing probabilities, yet max-pooling dropout with typical retaining
probabilities often outperforms stochastic pooling by a large mar-
gin.

In this paper, dropout on the input tomax-pooling layers is also
called max-pooling dropout for brevity. Similarly, dropout on the
input to convolutional (or fully-connected) layers is called convo-
lutional (or fully-connected) dropout.

2. Review of dropout training for convolutional neural net-
works

CNNs have far been known to produce remarkable performance
on MNIST (LeCun, Bottou, Bengio, & Haffner, 1998), but they,
together with other neural network models, fell out of favor
in practical machine learning as simpler models such as SVMs
became the popular choices in the 1990s and 2000s. With deep
learning renaissance (Bengio, Courville, & Vincent, 2013; Ciresan,
Meier, & Schmidhuber, 2012; Hinton & Salakhutdinov, 2006),
CNNs regained attentions from machine learning and computer
vision community. Like other deep models, many issues can arise
with deep CNNs if they are naively trained. Two main issues are
computation time and over-fitting. Regarding the former problem,
GPUs help a lot by speeding up computation significantly.

To combat over-fitting, a wide range of regularization tech-
niques have been developed. A simple but effective method is
adding l2 penalty to the network weights. Other common forms
of regularization include early stopping, Bayesian fitting (Mackay,
1995), weight elimination (Ledoux & Talagrand, 1991) and data
augmentation. In practice, employing these techniques when
training big neural networks provides better test performances
than smaller networks trained without any regularization.

Dropout is a new regularization technique that has been more
recently employed in deep learning. It is similar to bagging
(Breiman, 1996), in which a set of models are trained on differ-
ent subsets of the same training data. At test time, different mod-
els’ predictions are averaged together. In traditional bagging, each
model has independent parameters, and all members would be
trained explicitly. In the case of dropout training, there are expo-
nentially many possibly trained models, and these models share
the same parameters, but not all of them are explicitly trained. Ac-
tually, the number of explicitly trained models is not larger than
m × e, where m is the number of training examples, and e is the
training epochs. This is much smaller than the number of possi-
bly trained models, 2n (n is the number of hidden units in a feed-
forward neural network). Therefore, a vast majority of models are
not explicitly trained at training time.

At test time, bagging makes a prediction by averaging together
all the sub-models’ predictions with the arithmetic mean, but it
is not obvious how to do so with the exponentially many models
trained by dropout. Fortunately, the average prediction of expo-
nentially many sub-models can be approximately computed sim-
ply by running the whole network with the weights scaled by
retaining probability. The approximation has beenmathematically
characterized for linear and sigmoidal networks (Baldi & Sadowski,
2014; Wager, Wang, & Liang, 2013); for piecewise linear networks
such as rectified linear networks, Warde, Goodfellow, Courville,
and Bengio (2014) empirically showed thatweight-scaling approx-
imation is a remarkable and accurate surrogate for the true ge-
ometric mean, by comparing against the true average in small
enough networks that the exact computation is tractable.

Since dropout was thought to be far less advantageous in con-
volutional layers, pioneering work by Hinton et al. (2012) only
applied it to fully-connected layers. It was the reason they pro-
vided that the convolutional shared-filter architecture was a dras-
tic reduction in the number of parameters and thus reduced its
possibility to overfit in convolutional layers. Wonderful work by
Krizhevsky et al. (2012) trained a very big convolutional neural
net, which had 60 million parameters, to classify 1.2 million high-
resolution images of ImageNet into the 1000 different categories.
Two primarymethods were used to reduce over-fitting in their ex-
periments. The first one was data augmentation, an easiest and
most commonly used approach to reduce over-fitting for image
data. Dropout was exactly the second one. Also, it was only used
in fully-connected layers. In the ILSVRC-2012 competition, their
deep convolutional neural net yielded top-5 test error rate of 15.3%,
far better than the second-best entry, 26.2%, achieved by shallow
learning with hand-craft feature engineering. This was considered
as a breakthrough in computer vision. From then on, the commu-
nity believes that deep convolutional nets not only performbest on
simple hand-written digits, but also really work on complex natu-
ral images.

Compared to original work on dropout, (Srivastava, Hinton,
Krizhevsky, Sutskever, & Salakhutdinov, 2014) provided more ex-
haustive experimental results. In their experiments on CIFAR-10,
using dropout in fully-connected layers reduced the test error
from 15.60% to 14.32%. Adding dropout to convolutional layers fur-
ther reduced the error to 12.61%, revealing that applying dropout
to convolutional layers aided generalization. Similar performance
gains can be observed on CIFAR-100 and SVHN. Still, they did not
explore max-pooling dropout.

Stochastic pooling (Zeiler & Fergus, 2013) is a dropout-inspired
regularization method. The authors replaced the conventional de-
terministic pooling operationswith a stochastic procedure. Instead
of always capturing the strongest activity within each pooling re-
gion as max-pooling does, stochastic pooling randomly picks the
activations according to a multinomial distribution. At test time,
probability weighting is used as an estimate to the average over
all possible models. Interestingly, stochastic pooling resembles the
case of using dropout inmax-pooling layers, so it is worth compar-
ing them.

DropConnect (Wan et al., 2013) is a natural generalization of
dropout for regularizing large feed-forward nets. Instead of setting
to zero the activations, it sets a randomly picked subset of weights
within the network to zero with probability 1 − p. In other words,
the fully-connected layer with DropConnect becomes a sparsely
connected layer in which the connections are chosen stochasti-
cally during training. Each unit thus only receives input from a ran-
dom subset of units in the previous layer. DropConnect resembles
dropout as it involves stochasticity within the model, but differs
in that the stochasticity is on the weights, rather than the output
vectors of a layer. Results on several visual recognition datasets
showed that DropConnect often outperformed dropout.

Maxout network (Goodfellow, Warde-Farley, Mirza, Courville,
& Bengio, 2013) is another model inspired by dropout. The max-
out unit picks the maximum value within a group of linear pieces
as its activation. This type of nonlinearity is a generalization of
the rectified activation function and is capable of approximating
the arbitrary convex function. Combining with dropout, maxout
networks have been shown to achieve best results on MNIST,
CIFAR-10, CIFAR-100 and SVHN.However, the authors did not train
maxout networks without dropout. Besides, they did not train the
rectified counterparts with dropout and directly compare it with
maxout networks. Therefore, itwas not clear thatwhich factor con-
tributed to such remarkable results.
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