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a b s t r a c t

The constrained optimal control problem depends on the solution of the complicated Hamilton–Jacobi–
Bellman equation (HJBE). In this paper, a data-based off-policy reinforcement learning (RL) method is
proposed, which learns the solution of the HJBE and the optimal control policy from real system data.
One important feature of the off-policy RL is that its policy evaluation can be realized with data generated
by other behavior policies, not necessarily the target policy, which solves the insufficient exploration
problem. The convergence of the off-policy RL is provedbydemonstrating its equivalence to the successive
approximation approach. Its implementation procedure is based on the actor–critic neural networks
structure, where the function approximation is conducted with linearly independent basis functions.
Subsequently, the convergence of the implementation procedure with function approximation is also
proved. Finally, its effectiveness is verified through computer simulations.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Optimal control is an important part of control theory, which
has been widely investigated over the past several decades. The
bottleneck of its applications to nonlinear systems is that it de-
pends on the solution of the Hamilton–Jacobi–Bellman equation
(HJBE) (Bertsekas, 2005; Hull, 2003; Lewis, Vrabie, & Syrmos,
2013), which is extremely difficult to obtain analytically. Over the
past few years, reinforcement learning (RL) (Lendaris, 2009; Pow-
ell, 2007; Precup, Sutton, & Dasgupta, 2001; Sutton & Barto, 1998),
has appeared as an efficient tool to solve the HJBE andmanymean-
ingful results (Faust, Ruymgaart, Salman, Fierro, & Tapia, 2014;
Jiang & Jiang, 2012; Lee, Park, & Choi, 2012; Liu, Wang, & Li, 2014;
Liu & Wei, 2014; Luo, Wu, Huang, & Liu, 2014; Modares & Lewis,
2014; Murray, Cox, Lendaris, & Saeks, 2002; Vamvoudakis & Lewis,
2010; Vrabie & Lewis, 2009; Vrabie, Pastravanu, Abu-Khalaf, &
Lewis, 2009; Wang, Liu, & Li, 2014; Wei & Liu, 2012; Yang, Liu,
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& Wang, 2014; Yang, Liu, Wang, & Wei, 2014; Zhao, Xu, & Jagan-
nathan, 2014) have been reported. For example, appropriate es-
timators were employed for approximating value function such
that the temporal difference error isminimized (Doya, 2000). Mur-
ray et al. (2002) suggested two policy iteration algorithms that
avoid the necessity of knowing the internal system dynamics. Vra-
bie et al. (2009) extended their result and proposed a new policy
iteration algorithm to solve the linear quadratic regulation prob-
lem online along a single state trajectory. A nonlinear version of
this algorithm was presented in Vrabie and Lewis (2009) by us-
ing neural network (NN) approximator. Vamvoudakis and Lewis
(2010) also gave a so-called synchronous policy iteration algorithm
which tunes synchronously the weight parameters of both NNs in
the actor–critic structure. An integral reinforcement learning (IRL)
method (Modares & Lewis, 2014) was introduced to solve the lin-
ear quadratic tracking problem of partially-unknown continuous-
time systems. Online adaptive optimal control (Jiang & Jiang, 2012)
and Q-learning (Lee et al., 2012) algorithms were developed for
linear quadratic regulator problem. Off-policy RL approaches were
proposed to solve the nonlinear data-based optimal control prob-
lem (Luo et al., 2014) and partially model-freeH∞ control problem
(Luo, Wu, & Huang, 2015). However, it is noted that control con-
straints are not involved in these results.

In practice, constraints widely exist in real control systems and
have damaging effects on the systemperformance, and thus should
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be accounted for during the controller design process. For the con-
strained optimal control problem, several results (Abu-Khalaf &
Lewis, 2005; He & Jagannathan, 2005, 2007; Heydari & Balakrish-
nan, 2013; Liu, Wang, & Yang, 2013; Lyshevski, 1998; Modares,
Lewis, & Naghibi-Sistani, 2013; Zhang, Luo, & Liu, 2009) have been
reported recently. A nonquadratic cost functional was introduced
by Lyshevski (1998) to confront input constraints, and then the as-
sociated HJBE was reformulated accordingly. As the extensions of
the method in Saridis and Lee (1979) and Beard, Saridis, and Wen
(1997) to handle constrained optimal control problem, model-
based successive approximation method was used for solving
the HJBE of continuous-time systems (Abu-Khalaf & Lewis, 2005)
and discrete-time systems (Chen & Jagannathan, 2008). Modares,
Lewis, and Naghibi-Sistani (2014) developed an experience-replay
based IRL algorithm for nonlinear partially unknown constrained-
input systems. Aheuristic dynamic programmingwas used to solve
the constrained optimal control problem of nonlinear discrete-
time systems (Zhang et al., 2009). The single network based adap-
tive critics method was proposed for finite-horizon nonlinear
constrained optimal control design (Heydari & Balakrishnan,
2013). However, the data-based constrained nonlinear optimal
control problem is rarely studied with off-policy RL and still re-
mains an open issue.

In this paper, a data-based off-policy RL method is proposed for
learning the constrained optimal control policy form real system
data instead of using mathematical model. The rest of the paper
is arranged as follows. Section 2 gives the problem description
and Section 3 presents a model-based successive approximation
method. The data-based off-policy RL method is developed in
Section 4. Section 5 shows the simulation results and Section 6
gives the conclusions.

Notation: R and Rn are the set of real numbers and the n-
dimensional Euclidean space, respectively. ∥ · ∥ denotes the
vector norm or matrix norm in Rn. The superscript T is used for
the transpose and I denotes the identify matrix of appropriate
dimension. ▽ , ∂/∂x denotes a gradient operator. C1(X) is a
function space onXwith continuous first derivatives. LetX andU
be compact sets, denote D , {(x, u)|x ∈ X, u ∈ U}. For column
vector functions s1(x, u) and s2(x, u), where (x, u) ∈ D , define
inner product ⟨s1(x, u), s2(x, u)⟩D ,


D
sT1(x, u)s2(x, u)d(x, u) and

norm ∥s1(x, u)∥D , ⟨s1(x, u), s2(x, u)⟩
1/2
D .

2. Problem description

Let us consider the following continuous-time nonlinear
system:

ẋ(t) = f (x(t))+ g(x(t))u(t), x(0) = x0, (1)

where x = [x1, . . . , xn]T ∈ Rn is the state, x0 is the initial state and
u = [u1, . . . , um]

T
∈ Rm is the control input constrained by |ui| 6

β , β > 0. Assume that f (x) + g(x)u(x) is Lipschitz continuous on
X that contains the origin, f (0) = 0, and the system is stabilizable
on X, i.e., there exists a continuous control function u(x) such that
the system is asymptotically stable. f (x) and g(x) are continuous
unknown vector or matrix functions of appropriate dimensions.

The optimal control problem under consideration is to learn
a state feedback control law u(t) = u(x(t)) from real system
data, such that the system (1) is closed-loop asymptotically sta-
ble, and minimize the following generalized infinite horizon cost
functional:

V (x0) ,


+∞

0
(Q (x(t))+ W (u(t)))dt, (2)

where Q (x) andW (u) are positive definite functions, i.e., for ∀x ≠

0, u ≠ 0, Q (x) > 0, W (u) > 0, and Q (x) = 0, W (u) = 0 only

when x = 0, u = 0. Then, the optimal control problem is briefly
presented as

u(t) = u∗(x) , argmin
u

V (x0). (3)

3. Model-based successive approximation method

For the model-based optimal control problem (3), i.e., the
mathematicalmodels of f (x) and g(x) are completely known, it can
be converted to solving the HJBE. In Abu-Khalaf and Lewis (2005),
a model-based successive approximation method was given for
solving the HJBE, where the HJBE is successively approximated by
a sequence of linear partial differential equations. Before we start,
the definition of admissible control (Abu-Khalaf & Lewis, 2005;
Beard et al., 1997) is given.

Definition 1 (Admissible Control). For the given system (1), x ∈ X,
a control policy u(x) is defined to be admissible with respect to
the cost function (2) on X, denoted by u(x) ∈ U(X), if, (1) u is
continuous on X, (2) u(0) = 0, (3) u(x) stabilizes the system, and
(4) V (x) < ∞,∀x ∈ X. �

For ∀u(x) ∈ U(X), its value function V (x) of (2) satisfies the
following linear partial differential equation (Abu-Khalaf & Lewis,
2005):

[∇V (x)]T(f (x)+ g(x)u(x))+ Q (x)+ W (u) = 0, (4)

where V (x) ∈ C1(X), V (x) ≥ 0 and V (0) = 0. From the optimal
control theory (Anderson & Moore, 2007; Bertsekas, 2005; Lewis
et al., 2013), if using the optimal control u∗(x), the Eq. (4) results in
the HJBE

[∇V ∗(x)]T(f (x)+ g(x)u∗(x))+ Q (x)+ W (u∗) = 0. (5)

For the system (1) with input constraints |ui| 6 β , the following
nonquadratic form W (u) for the cost functional (2) can be used
(Abu-Khalaf & Lewis, 2005; Lyashevskiy, 1996; Lyshevski, 1998;
Modares et al., 2013):

W (u) = 2
m
l=1

rl

 ul

0
ϕ−1(µl)dµl, (6)

where µ ∈ Rm, rl > 0 and ϕ(·) is a continuous one-to-one
bounded function satisfying |ϕ(·)| 6 β with ϕ(0) = 0. Moreover,
ϕ(·) is a monotonic odd function and its derivative is bounded.
An example of ϕ(·) is the hyperbolic tangent tanh(·). Denoting
R = diag(r1, . . . , rm), it follows from Abu-Khalaf and Lewis (2005)
and Lyshevski (1998) that the HJBE (5) of the constrained optimal
control problem is given by

[∇V ∗
]
T


f − gϕ


1
2
R−1gT

∇V ∗


+ Q (x)

+W


−ϕ


1
2
R−1gT

∇V ∗


= 0. (7)

By solving theHJBE forV ∗(x), the optimal control policy is obtained
as:

u∗(x) = −ϕ


1
2
R−1gT(x)∇V ∗(x)


. (8)

For simplicity of description, define

ν∗(x) , −
1
2
R−1gT(x)∇V ∗(x). (9)
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