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a b s t r a c t

In this paper, the synchronization problem for neural networks with stochastic perturbation is studied
with intermittent control via adaptive aperiodicity. Under the framework of stochastic theory and Lya-
punov stability method, we develop some techniques of intermittent control with adaptive aperiodicity
to achieve the synchronization of a class of neural networks, modeled by stochastic systems. Some effec-
tive sufficient conditions are established for the realization of synchronization of the underlying network.
Numerical simulations of two examples are provided to illustrate the theoretical results obtained in the
paper.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Complex networks are playing more and more important
roles in our today’s society. A complex network is characterized
by a large set of nodes that are connected through a set of
links for the communication and interaction purpose. Many real
world phenomena, such as those appeared in telecommunication,
biological formation, chemical reaction, neural networks, social
organization, the World Wide Web, . . . etc., can be described or
modeled by complex networks. Since the seminal papers that
started to discuss the ‘‘small-world’’ and ‘‘scale-free’’ properties
(Barabasi & Albert, 1999; Watts & Strogatz, 1998), the study of
complex networks is not only becoming one of the main research
areas in the network society but also brought a great of attention
from researchers of different fields.With the viewpoint of complex
dynamical networks, many interesting and important dynamical
behaviors, such as synchronization, consensus, self-organization,
combinatorial optimization, and spatiotemporal chaos of spiral
waves, have been studied (Arenas, Guilera, Kurths, Morenob, &
Zhoug, 2008; Guan, Liu, Feng, & Wang, 2010; He, Li, Huang, & Li,
2014; He, Li, Huang, Li, &Huang, 2014; He, Yu, Huang, Li, & Li, 2014;
Li, Yu, &Huang, 2014; Liu,Wang, Liang, & Liu, 2009; Lu, Ho, &Wang,
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2009; Tang, Wang, Gao, Swift, & Kurths, 2012; Wen, Bao, & Zeng,
2013;Wen, Huang, & Zeng, 2015;Wen, Zeng, & Huang, 2014). Over
the past decades, synchronization of large-scale complex networks
consisting of coupling dynamical systems has been extensively
investigated in various disciplines Huang, Ho, and Cao (2005) and
Lu and Chen (2006) (Arenas et al., 2008; Strogatz & Stewart, 1993;
Tang et al., 2012; Wu, 2007).

As a special class of complex networks, coupled neural net-
works have been a hot topic because they have wide applications
in a variety of areas. One of the focus topics in the investigation of
neural networks is the synchronization of all dynamical nodes in a
network, resulting from its important applications such as in im-
age processing, general neural networks, secured communication
and network updating.Meanwhile,many controlmethodology has
been developed in order to synchronize neural networks governed
by nonlinear systems, such as adaptive control (Zhang & Chen,
2009), fuzzy control (Gao, Feng, & Xi, 2014), impulsive control (Li,
Li, & Liao, 2011; Li & Song, 2013; Yang, Cao, & Lu, 2011; Zhang, Tang,
Miao, & Du, 2013) and intermittent control (Hu, Yu, & Jiang, 2010).

Intermittent control, which was first introduced to control the
nonlinear dynamical systems in Zochowski (2000), has been used
for a variety of purposes such as manufacturing, transportational
and communication. In the past, the intermittent control was
mainly periodically intermittent control (Cai, Liu, Xu, & Shen, 2009;
Wang, Feng, Xu, & Zhao, 2013; Xia & Cao, 2009; Yu, Hu, Jiang, &
Teng, 2012). In Cai et al. (2009), periodically intermittent control is
used for the neural networks with time-varying delays to a desired
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orbit. In Yu et al. (2012), the authors have discussed the exponen-
tial lay synchronization for delayed fuzzy cellular neural networks
via periodically intermittent control. Meanwhile, uncertainties al-
ways exist in the real applications, such as stochastic forces on
the physical systems and noisy measurements caused by environ-
ment complexity. For instance, signals transmitted between nodes
of neural networks are unavoidably subject to stochastic perturba-
tions from environment, which may cause information contained
in these signals being lost. Therefore, stochastic perturbations can-
not be ignored in general (Huang, Feng, & Cao, 2008; Lu, Ho, &
Cao, 2008; Pototsky & Janson, 2009; Wang et al., 2013; Yang &
Cao, 2009). In Wang et al. (2013), the exponential synchronization
of stochastic perturbed complex networks with time-varying de-
lays via periodically intermittent pinning was studied. In Yang and
Cao (2009), stochastic synchronization of coupled neural networks
with intermittent control was also investigated.

The requirement of periodicity of intermittent control strategy
may not be suitable in reality. For example, the generation of wind
power in smart grid relies on the various situations of our real
world, which is obviously aperiodically intermittent. Therefore, for
the theoretical analysis of real applications, it is more practical to
consider the synchronization problem under aperiodically inter-
mittent control strategy. To the best of our knowledge, there have
been few results for the study of dynamical behaviors in terms of
aperiodically intermittent control strategy. In Liu and Chen (2015),
synchronization of nonlinear coupled networks via aperiodically
intermittent pinning control was investigated. In this paper, we
will study the synchronization of nonlinear coupled complex net-
works with stochastic perturbation via aperiodically intermittent
control.

Motivated by above discussions, in this paper, we will in-
vestigate the problem of synchronization of neural networks
with stochastic perturbation via aperiodically intermittent control.
Firstly,wewill establish sufficient conditions for nonlinear coupled
networks under aperiodically intermittent control to achieve syn-
chronization. Secondly, by virtue of properties of Weiner process
and estimation techniques, suitable aperiodically intermittent and
adaptive aperiodically intermittent controllers are designed to en-
sure stochastic synchronization for the coupled complex networks
with stochastic perturbations. Synchronization criteria obtained in
the paper are simple and verifiable, and hence it is practically use-
ful in applications. The obtained theoretical results will be illus-
trated by numerical simulations in last section.

The structure of this paper is organized as follows: in Section 2,
we will introduce the neural network model with stochastic per-
turbation in terms of aperiodically intermittent control as well as
some notations. Sufficient synchronization conditions with math-
ematical justifications are presented in Section 3. Two illustrative
example are given to demonstrate the effectiveness of the pro-
posed approach in Section 4. The paper ends with concluding re-
marks in Section 5.

Notations. The following notations will be used throughout this
paper. λmax(·) stands for themaximum eigenvalue of a real matrix.
R+ and Rn represent, respectively, the set of nonnegative real
numbers and the n-dimensional Euclidean space. Rn×n is used for
the set of all n × n real matrices. ∥ · ∥ is the standard Euclidean
norm in Rn. A = (aij)n×n stands for an n×nmatrix with entries aij.
The superscript T denotes the transpose of a matrix or a vector. In
is the n × n identity matrix.

2. Problem formulation and some preliminaries

We consider a neural network system consisting of N identical
nodes that are nonlinear coupling with vector-form stochastic

perturbations, which is described by

ẋi(t) =


−Cxi(t) + Bf (xi(t))

+

N
j=1,i≠j

aij

φj(xj(t)) − φi(xi(t))


dt + σ(xi(t))dω(t) (1)

where xi(t) = (xi1(t), xi2(t), . . . , xin(t))T ∈ Rn represents the
state vector of the ith nodeof thenetwork;C = diag(c1, c2, . . . , cn)
with ck > 0, k = 1, 2, . . . , n, denotes the rate with
which the kth cell rests its potential to the resting state when
isolated from other cells and inputs; B = [bij]n×n ∈ Rn×n

represent the connection weight matrix; A = [aij]n×n ∈ RN×N ;
f (xi(t)) = [f1(xi(t)), f2(xi(t)), . . . , fn(xi(t))]T is a continuous
vector; σ(xi(t)) = σ(x1, x2, . . . , xn) ∈ Rn×n is the noise intensity
matrix and ω(t) = (ω1(t), ω2(t), . . . , ωn(t))T ∈ Rn is bounded
vector-form Weiner process, satisfying Eωj(t) = 0, Eω2

i = 1,
Eωj(t)ωj(s) = 0(s ≠ t).

In the case that system (1) reaches synchronization, i.e. x1(t) =

x2(t) = · · · = xN(t) = s(t), by introducing a controller into each
individual node, where s(t) ∈ R is defined as

ṡ(t) = [−Cs(t) + Bf (s(t))]dt + σ(s(t))dω(t) (2)

and s(t) can be set to be any desired state: either equilibriumpoint,
or a nontrivial periodic orbit, or even a chaotic orbit.

In order to achieve the synchronization objective, the aperiodi-
cally intermittent controllers will be applied to some of its nodes.
For the convenience of description, we denote φ(xj(t), xi(t)) =

φj(xj(t)) − φi(xi(t)). Thus the intermittent controlled network can
be formulated as

ẋi(t) =


−Cxi(t) + Bf (xi(t))

+

N
j=1,i≠j

aijφ(xj(t), xi(t)) + ui(t)


dt + σ(xi(t))dω(t) (3)

where ui(t) (i = 1, 2, . . . , n) are the intermittent linear state
feedback controller and it is constructed as following

ui(t) =


−εiφ(xi(t), s(t)), t ∈ [ti, si),
0, t ∈ [si, ti+1), i = 0, 1, 2, . . . (4)

where εi > 0 represents control gain andΞ = diag(ε1, ε2, . . . , εN)
∈ Rn×n. The synchronization error is defined to be ei(t) = xi(t) −

s(t). By the controller expression (4), the error dynamics is gov-
erned by

ėi(t) =


−Cei(t) + Bg(ei(t))

+

N
j=1,i≠j

aijφ(xj(t), xi(t)) + ui(t)


dt + σ̃ (ei(t))dω(t) (5)

where g(ei(t)) = f (xi(t))− f (s(t)) and σ̃i(t) = σ(xi(t))−σ(s(t)).

Assumption 1. For the aperiodically intermittent control strategy,
there exist two positive scalar 0 < θ < ω, such that, for i = 0, 1, 2
inf
i
(si − ti) = θ > 0

sup
i

(ti+1 − ti) = ω < +∞. (6)
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