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relationships of trained and new testing input patterns. Differential polynomial neural networks form
a new class of neural networks, which construct and solve an unknown general partial differential
equation of a function of interest with selected substitution relative terms using non-linear multi-variable
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G?;lv:f;l ;artial differential equation composite polynomials. The layers of the network generate simple and composite relative substitution
composition terms whose convergent series combinations can describe partial dependent derivative changes of

the input variables. This regression is based on trained generalized partial derivative data relations,
decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used
as a nonlinear activation of artificial neurons, may transform some polynomial items together with
the parameters with the aim to improve the polynomial derivative term series ability to approximate
complicated periodic functions, as simple low order polynomials are not able to fully make up for the
complete cycles. The similarity analysis facilitates substitutions for differential equations or can form
dimensional units from data samples to describe real-world problems.
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1. Introduction Fourier (Chaquet & Carmona, 2012) and polynomial or wavelet
series (Liu, Niu, Wang, & Fan, 2014). Polynomial fractions can sub-
stitute for differential equation solutions using analogue compu-
tation (Bournez, Campagnolo, Graca, & Hainry, 2007). ANN is able
to model the non-linear nature of dynamic processes and repro-
duce a relationship between some inputs and one or more outputs
(Rakkiyappan, Zhu, & Chandrasekar, 2014). It can form simple and
solid models of systems, the exact solution of whose is problem-
atic or impossible to produce using standard regression techniques
(Rakkiyappan, Chandrasekar, Lakshmanan, & Park, 2014). As arule
a lot of soft computing methods utilize some direct composing
techniques, e.g. GP or fuzzy models build a required function from
a predefined set of operators and terminals to form symbolic tree-
like expressions (Cornforth & Lipson, 2013). In the same vein, the
common ANNs cannot create more complex models using only
flat 1 or 2-layer structures; they apply only absolute values of in-

Partial differential equations define a variety of models for func-
tion approximation problems of dynamic systems (Rakkiyappan &
Dharani, 2015) that are difficult to describe directly by unique ex-
plicit expressions (Rakkiyappan, Dharani, & Zhu, 2015). To form
the solutions, one can apply evolutionary strategies (Chen, Yang,
Meng, Zhao, & Abraham, 2011), genetic programming (GP) (Cao,
Kang, Chen, & Yu, 2000; Iba, 2008) or artificial neural networks
(ANNS) (Tsoulos, Gavrilis, & Glavas, 2009; Wojciechowski, 2012),
which require differential equations to be pre-defined in a general
system or standard explicit form. Sum series are widespread used
to solve differential equations, e.g. power (Rudd & Ferrari, 2015),
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put variables, which are not able to describe a wider data range
than specified by the training samples. Thus the ANN generaliza-
tion abilities formed on a basis of the training data may be difficult
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or problematic if the model has been trained with inputs or out-
puts that are quite far from those forming the testing data (Giles,
2001). A trial could be made in looking at a vector of input variables
as a no compact “pattern” but a bound dependent point set in the
N-dimensional space. Artificial neurons can apply multi-variable
polynomials to generalize from observations partial data relations
points into some convergent substitution sum series of partial rel-
ative derivative terms of the composite function model. In con-
trast with the ANN functionality, each neuron (i.e., the derivative
term) output may be directly included in the combination sum of
the total network output calculation. Biological neural cells seem
to follow similar principles. The dendrites collect signals incoming
from other neurons but unlike the ANN functionality the signals
caninteract already in single branches. Multi-variable polynomials
can ease model this framework by means of multiplying (products)
some input variables. The weighted combinations are summed in
the cell of the body and then transformed through a time-pulse dy-
namic periodic activation function (the activated neural cell gen-
erates series of time-delayed output pulses in response to its input
signals) (Benuskova, 2002). The period of this activation function
depends on some non-linear combinations of input variables and
seems to represent a derivative part of a single differential equation
term substitution. According to these assumptions, brain applies
combined techniques of relative data processing and dynamic pe-
riodic functions to form derivative terms substitutions of systems
of differential equations in time-dependent pulse models, very ef-
ficient for a large scale variability, variable-differences and adapt-
ability of varied-shape input pattern forms.

Differential polynomial neural network (D-PNN) is a new neural
network type, which extends a complete multi-layer polynomial
neural network (PNN) structure to produce substitution relative
derivative terms, which selected combination can define and solve
an unknown general partial differential equation of a searched
multi-variable function model. The D-PNN forms its functional
output as a generalization of partial polynomial data relations
however it can also decompose a visual input pattern into
some characteristic matrix fragments to model the elementary
point (feature) relations, possible to identify by the searched
function (analogous to the ANN function approximation and
pattern recognition). This way the D-PNN relative derivative
model can correctly classify any untrained variable-shape pattern
forms, which keeps the trained data relations (modelled function),
regardless of the size and position in the input matrix (Zjavka,
2012b). A number of technical, biological, and psychological
studies suggest the brain applies just relative forms of input
variables (e.g. contrary to the absolute signals of a CCD camera,
which must be comparatively processed in a solar image
Druckmiiller, 2009) and a reductive decomposition of complete
input patterns into some major characteristic elements (low-level
properties) (Fiset et al., 2008). Line terminations are by far the
mostimportant features for the correct human letter identification.
Other features as intersections, curvatures or slants are considered
to a lesser extent (Willenbockel et al., 2010). Generalized relations
of the elementary fragment positions might define a variable-
shape (size-independent) type model for all visual pattern forms
(Zjavka, 2012b).

The D-PNN relative models are able to apply quite different
training and testing intervals of input and output data values.
The particle swarm optimization, usually used for a continuous
optimization (Abraham, Guo, & Liu, 2006), can cope with binary
combinatorial problems (Yuan, Nie, Su, Wanga, & Yuan, 2009) like
the derivative term combination selection from the substitution
sum series in a differential equation solution. Sections 2 and
3 describe the theoretical background of the general derivative
model and provide math proofs of the simplest linear form validity
of the derivative term fraction substitutions. Section 4 presents

the D-PNN multi-layer architecture and its principles used for
the substitution and calculation of composite derivative terms.
Section 5 presents test approximations of several types of periodic
multi-variable benchmarks and comparisons of the D-PNN and
ANN models mostly on the complete trained intervals of matrix
point hyper-surfaces of 3-dimensional functions. Section 6 tests
two different types of neural networks to model real multi-variable
functions, which some fluctuant unstable weather data relations
may represent. All the presented benchmark and real data models
apply only a basic PNN architecture with a limited number of
input variables, which do not increase the number of combination
couples in each hidden layer and it is not necessary to select some
of them. The PNN application in the formation and solution of the
general differential equation is a novelty in this field, however the
experimental results indicate that the method is efficient (using
only a few derivative terms Zjavka & Abraham, 2013) and can
model non-linearities of physical or natural dynamic processes and
systems, which general differential equations may conveniently
describe and which are too uncertain or complex to be described
by means of exact computational techniques. A standard notation
used in all formulas, is outlined below.

x;—input variables or particle value/state

y;—polynomial or substitution term output, Y—overall (net-
work) output

u—modelled function, f (y)—composite function

a, b—polynomial parameters,

w;—weights of terms

sig—sigmoidal function, rbf—radial basis function
neuron—substituting fraction DE term, CT—Composite Terms
(using composite functions derivatives)

P,—probability of activation of neurons

DE—Differential Equation

PNN—Polynomial Neural Network

ANN-Artificial Neural Network

RMSE—Root Mean Squared Error

2. Theoretical background of the partial derivative terms
substitution

The D-PNN uses a complete PNN structure to produce
substitution polynomial fraction sum terms that can solve the
general partial differential equation according to the similarity
dimensional analysis, which forms system characteristics from
dimensionless ratio groups of variables (Price, 2003). The analysis
leads to a set of independent dimensionless factors, which may
carry information about the behaviour of a system and represent
the major reduced variables, applied to the regression function in
place of the original measurements. This scale-invariance model
can replace the standard data transformations (Randall, 2012). The
Buckingham rr -theorem proves the original unknown relationship,
represented by f(x1, X2, ...,X;) = 0, where x; are the variables,
can be transformed into a new function ¢ (q, 73, ..., Ty_m) of
n — m independent dimensionless reduced products m; of the
original x; variables, where m is the number of fundamental
dimensions out of which the dimensions of the original variables
are composed (Vignaux, 1992). The dimensional analysis is the
most useful in the case that a mathematical model is not known
however it can investigate a differential equation, which describes
a physical process or principle. For instance, a motion of a simple
pendulum (1) can be approximated for restricted values of the
initial conditions and the angle ¢ by means of a linear model (2).
¢ g
el sin ¢ (1)
¢—angle of the line
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