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a b s t r a c t

Regularization schemes are frequently used for performing ranking tasks. This topic has been intensively
studied in recent years. However, to be effective a regularization scheme should be equipped with a
suitable strategy for choosing a regularization parameter. In the present study we discuss an approach,
which is based on the idea of a linear combination of regularized rankers corresponding to different values
of the regularization parameter. The coefficients of the linear combination are estimated by means of the
so-called linear functional strategy. We provide a theoretical justification of the proposed approach and
illustrate them by numerical experiments. Some of them are related with ranking the risk of nocturnal
hypoglycemia of diabetes patients.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In supervised learning one is given a set of examples
{x1, x2, . . . , xm} ⊂ X ⊂ Rd labeled with the corresponding values
{y1, y2, . . . , ym} ⊂ Y ⊂ R of the dependent variable y. Then
the learning task is to use this data as a training set z = {zi =

(xi, yi)}mi=1 ⊂ Z = X × Y for assigning a proper label y to a
previously unseen x ∈ X .

If the labels yi are treated as the values of some function at
given points xi, then the above mentioned learning task is referred
to as regression, or regression learning, and is one of the most
well-studied problems in learning theory. In recent years another
problem called ranking has gained attention in this theory.

Ranking is relatively new learning problem that is parallel to
regression. After the first paper (Cohen, Schapire, & Singer, 1999)
was published in 1999, ranking has been intensively investigated
in the literature. Here we refer to Agarwal and Niyogi (2009), Chen
(2012), Cossock and Zhang (2006), Crammer and Singer (2001),
Freund, Iyer, Schapire, and Singer (2003), Herbrich, Graepel,
and Obermayer (2000) and Mukherjee and Zhou (2006), just to
mention a few publications.

In ranking one also learns a real-valued function f : X → Y
that assigns a label y to x ∈ X , but the value y = f (x) itself is not
so important. What do matter are the relative ranks of instances
x, x′

∈ X induced by the labels f (x), f (x′). Namely, item x with
higher rank has larger value f (x).
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Thus, the task of learning ranking is different from regression,
but if we are looking for labeling functions f : X → Y in some
Reproducing Kernel Hilbert Space (RKHS) on X then, in spite of the
difference, both learning problems can be formulated as ill-posed
linear integral operator equations of the first kind in the chosen
RKHS (Chen, 2012; Kurkova, 2012; Smale & Zhou, 2007). The ill-
posedness of such formulations calls for the employment of the
regularization theory in the construction of regression and ranking
algorithms. In this theory, the performance of algorithms is usually
estimated under the source conditions expressed in terms of the
so-called index functions. It is known (see, e.g. Lu and Pereverzev
(2013) and Mathé and Pereverzev (2003)) that ill-posed equations
may involve entirely different operators but nevertheless allow the
same performance of regularization algorithms, if the solutions of
these equations satisfy the source conditions for the same index
function.

On the other hand, recently, the authors of Ying andZhou (2015)
have noticed a suboptimality of known ranking performance
estimates compared to the corresponding regression ones. The
same observation can be made from the comparison of Chen
(2012) with Smale and Zhou (2007) and Xu, Fang, and Wang
(2014)with Bauer, Pereverzev, and Rosasco (2007), when the same
regularization schemes are compared under the source conditions
generated by the same index functions.

This observation is not in agreement with the general fact of
the regularization theory mentioned above, and it hints at a gap in
the analysis of the regularized ranking algorithms. In the present
paper we refine this analysis and show that, at least for the so-
called offline learning, the performance of the regularized ranking
is similar to that of the regularized regression learning.
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The above mentioned refinement is obtained as a by-product
of the study of a new a posteriori regularization scheme in the
context of learning. Note that usually a posteriori regularization
means an adaptive choice of the parameter for single-parameter
regularizationmethods such as Tikhonov, Lavrentiev or Landweber
regularization and others like that. In the existing literature on the
regularization theory it is suggested to make the above choice by
using one of the known rules such as quasi-optimality criterion,
cross-validation, the discrepancyprinciple, the balancing principle.
In the context of learning these rules have been discussed in
Caponnetto and Yao (2010) and , Pereverzyev, and Rosasco (2010).
But these and similar rules select only one element from a family of
approximants, calculated according to an employed regularization
method, and leave others aside. Of course, the other approximants
are used in the selection process, but then they are rejected, in
spite of the numerical expensesmade for their construction. At the
same time, the rejected approximants may also contain important
information on the approximated quantity of interest and can
contribute to the improvement of the accuracy of its reconstruction
(see Fig. 1).

In the present study we explore the idea to use the calculated
approximants in the construction of a new one. More precisely, the
idea is to use linear combinations of the approximants calculated
for different values of the regularization parameter. It is clear that
the best Hilbert-space approximation by such a linear combination
requires the knowledge of inner products between the calculated
approximants and the approximated element, which is of course
unknown.

At the same time, the regularization theory tells us (see, e.g. Lu
and Pereverzev (2013), Proposition 2.17) that the values of linear
bounded functionals (e.g., inner products) at the approximated
elements can be estimated more accurately than the elements
themselves. The idea is to use the estimated values of the
corresponding inner products for simulating the best linear
combination of the calculated regularized approximants.

In the regularization theory the above-mentioned accurate
estimation of linear functionals is often called as linear functional
strategy (LFS). It was proposed in Anderssen (1986) and then
further developed in Bauer, Mathé, and Pereverzev (2007),
Goldenshluger and Pereverzev (2000) and Mathé and Pereverzev
(2002). The previous results on LFS have been obtained under
the assumption that the operators from the considered ill-posed
equations are directly accessible, but that is not the case in the
learning context. Therefore in the present studywe at first perform
adaptation–extension of LFS to that context.

The paper is organized as follows. In the next section we
recall the setting of least squares ranking and its formulation as
an ill-posed linear operator equation. Moreover, we describe a
general regularization scheme for solving this equation. At the
end of the section we specify the idea of a linear combination of
regularized rankers. In Section 3 we present the above-mentioned
extension of LFS and use it for simulating the best approximation
by linear combinations of given rankers. The section also contains
new bounds on the excess risk of the regularized ranking. In
Section 4 we illustrate our theoretical results by numerical tests
and discuss an application of the proposed ranking scheme in
diabetes technology.

2. Problem setting

Let the inputs x be taken from a compact domain or a manifold
X in the Euclidean space Rd and the ranking output space is Y =

[−M,M] ⊂ R. The input x and the output y are assumed to be
related by a conditional probability distribution ρ(y|x) of y given x.
Moreover, the input x is also assumed to be random and governed
by an unknown marginal probability ρX on X so that there is an

unknown probability distribution ρ(x, y) = ρX (x)ρ(y|x) on the
sample space Z = X × Y fromwhich the data forming the training
set z = {(xi, yi)}mi=1 are drawn independently. We are interested in
synthesizing a function y = f (x) that will simulate the relation
between the inputs x and the corresponding outputs y. More
precisely, the ranking problem is to learn from z = {(xi, yi)}mi=1
a ranking function f = fz : X → Y .

For given true ranks y and y′ of the inputs x, x′
∈ X the value

y − y′
−

f (x)− f (x′)

2
is interpreted as the magnitude-preserving least squares loss of a
ranking function f (see Agarwal and Niyogi (2009), Chen (2012),
Cortes, Mohri, and Rastogi (2007) and Ying and Zhou (2015)). Then
the quality of a ranking function f can bemeasured by the expected
risk

E(f ) =


Z


Z


y − y′

−

f (x)− f (x′)

2 dρ(x, y)dρ(x′, y′).

Let Fρ be a set of functions minimizing the risk E(f ). As it has
been noticed in Chen (2012) and Ying and Zhou (2015),Fρ contains
the target function

fρ(x) =


Y
ydρ(y|x), x ∈ X,

also known in learning theory as the regression function. It is easy
to observe, that the target function is not unique, for instance
fρ(x)+ c ∈ Fρ for each c ∈ R.

The ideal estimator fρ(x) cannot be found in practice, because
the conditional probability distribution ρ(y|x) is unknown. There-
fore, the goal might be to find f minimizing the excess risk E(f )−
E(fρ) over some hypothesis space H ∈ L2(X, ρX ). A widely used
choice of such a space is a ReproducingKernel Hilbert Space (RKHS)
H = HK , associated with a kernel K : X × X → R.

Observe that from the very definition of E(f ) and fρ it follows
that

E(f )− E(fρ) =


X×X


(f (x)− f (x′))− (fρ(x)− fρ(x′))

2
× dρX (x)dρX (x′). (1)

Indeed,

E(f )− E(fρ) =


Z×Z


y − y′

−

f (x)− f (x′)

2 dρ(x, y)dρ(x′, y′)

−


Z×Z


y − y′

−

fρ(x)− fρ(x′)

2 dρ(x, y)dρ(x′, y′)

=


X


Y


X


Y
[2y − 2y′

− fρ(x)+ fρ(x′)− f (x)+ f (x′)]

× [(fρ(x)− fρ(x′))− (f (x)− f (x′))]

× dρ(y′
|x′)dρ(y|x)dρX (x′)dρX (x)

=


X×X

[(fρ(x)− fρ(x′))− (f (x)− f (x′))]2dρX (x)dρX (x′).

Consider the space L2(X2, ρX2) of square-integrable functions
g(x, x′) with respect to the product measure dρX2(x, x′) =

dρX (x)dρX (x′) on X2
= X × X , and the operators∆ : L2(X, ρX ) →

L2(X2, ρX2), DK : HK → L2(X2, ρX2) such that

(∆f )(x, x′) = f (x)− f (x′),

(DK f )(x, x′) = ⟨Kx − Kx′ , f ⟩HK = f (x)− f (x′),

where Kx = K(x, ·), Kx′ = K(x′, ·), and we use the reproducing
property f (x) = ⟨Kx, f ⟩HK . Then in view of (1) the minimization
of the excess risk E(f ) − E(fρ) can be written as the least squares
problem

∥DK f −∆fρ∥2
L2(X2,ρX2 )

→ min
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