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a b s t r a c t

The fixed-time master–slave synchronization of Cohen–Grossberg neural networks with parameter uncer-
tainties and time-varying delays is investigated. Compared with finite-time synchronization where the
convergence time relies on the initial synchronization errors, the settling time of fixed-time synchro-
nization can be adjusted to desired values regardless of initial conditions. Novel synchronization con-
trol strategy for the slave neural network is proposed. By utilizing the Filippov discontinuous theory and
Lyapunov stability theory, some sufficient schemes are provided for selecting the control parameters to
ensure synchronization with required convergence time and in the presence of parameter uncertainties.
Corresponding criteria for tuning control inputs are also derived for the finite-time synchronization. Fi-
nally, two numerical examples are given to illustrate the validity of the theoretical results.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Since the pioneering work of Cohen and Grossberg (1983), the
Cohen–Grossberg neural network has been capturing increasing
attention from various fields, such as parallel computation, signal
and image processing, nonlinear optimization, pattern recognition,
among many others (Hornik, Stinchcombe, & White, 1989; Kosko,
1992). There have been many works focusing on the stability and
synchronization analysis of the Cohen–Grossberg neural network
(Cao & Liang, 2004; Cao & Song, 2006; Chen & Rong, 2003, 2004; Lu
& Chen, 2003;Wang, Liu, Li, & Liu, 2006; Yang, Cao, & Yu, 2014; Yu,
Cao, & Chen, 2007).

The synchronization of the master–slave systems has been ex-
tensively investigated due to its wide applications in communi-
cation security and neuroscience (Kanter, Kinzel, & Kanter, 2002).
The synchronization indicates that the states of the slave system
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converge to those of the master system. The asymptotic synchro-
nization, exponential synchronization are incorporated in the cat-
egory of the infinite time synchronization (Cao & Lu, 2006; Wu,
Shi, Su, & Chu, 2012). However, in many practical applications, the
synchronization is required to be realized in some finite-time in-
stead of asymptotically, which leads to the study about finite-time
synchronization control (Bhat & Bernstein, 2000). Compared with
infinite-time synchronization, the finite-time synchronization in-
trinsically requires a faster convergence speed, and more signifi-
cantly, the states of themaster system and the slave system remain
completely identical after some finite time, which is called the set-
tling time (Cao, Ren, & Meng, 2010; Guan, Sun, Wang, & Li, 2012;
Liu, Ho, Yu, & Cao, 2014; Yang & Cao, 2010).

Noting that a critical issue about the finite-time synchroniza-
tion is that the settling time is dependent on the initial conditions
of the master–slave systems. Different initial conditions may re-
sult in different convergence time. Nevertheless, the initial con-
ditions of many practical systems can hardly be adjusted or even
impossible to be estimated, which leads to the inaccessibility of
the final settling time and deteriorating of the systems’ perfor-
mance. To overcome this difficulty, Polyakov (2012) proposed a
nonlinear feedback design for the fixed-time stabilization of linear
control systems, where the definition of fixed-time stable is firstly
introduced. Further investigations of fixed-time consensus and sta-
bilization problems have been presented in Parsegov, Polyakov,
and Shcherbakov (2013) and Polyakov, Efimov, and Perruquetti
(2015).
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In practical situations, due to various perturbations in electric
implementations, parameter uncertainties are inevitable. More-
over, in the synchronization problem, parameters of the master
system and those of the slave system are not always identical since
the two systemsmay be influenced by different outer disturbances
Zhou, Chen, and Xiang (2006) and Zhang, Ma, Huang, and Wang
(2010). Compared with some previous works with the assumption
that the parametric uncertainties are always identical Ma, Zhang,
and Fu (2008), investigations of the case where the connection pa-
rameters of the master system and the slave system subject inde-
pendent uncertainties have more wide applications.

Motivated by the above concerns, this paper investigates the
robust fixed-time synchronization control problem for the mas-
ter–slave Cohen–Grossberg neural networks, which can induce
faster convergence independent of the initial conditions and tol-
erate uncertain parameters. This has not been investigated in the
existing literature, which is actually the main contribution of this
paper. Different from the previous studies concerning the finite-
time synchronization, where the final convergence time is closely
related to the initial synchronization errors, the settling time of
the fixed-time synchronization can be directly calculated and pre-
designed regardless of the initial values of the master–slave sys-
tems. Additionally, the connection weights of the master system
and those of the slave system are assumed to be varying inde-
pendently in a bounded interval. For the first time, a new control
scheme is proposed for the fixed-time synchronization of themas-
ter–slave neural networks with parameter uncertainties. The con-
trol law involves both continuous terms and discontinuous terms,
which together ensure the fixed-time synchronization and elim-
inate the effect of parameter mismatches. The control protocol
fully utilizes the advantages of nonlinear ones, with which faster
convergence speed over linear ones can be obtained (Liu, Chen,
& Lu, 2009). With the employment of a novel transformation of
the Cohen–Grossberg neural networks, simple but efficient Lya-
punov functions can be constructed. By virtue of differential in-
clusion theory (Filippov & Arscott, 1988) and nonsmooth analysis
(Clarke, 1998;Wen,Duan, Zhao, Yu, &Cao, 2014), criteria for select-
ing the control parameters are further derived. Through properly
tuning some specific control parameters, the convergence time can
be adjusted in advance to satisfy practical requirements regardless
of initial synchronization errors.

The rest of the paper is outlined as follows. Model description
and some preliminaries concerning the discontinuous theory are
presented in Section 2. The control design schemes are proposed
and employed to ensure the robust fixed-time synchronization and
the robust finite-time synchronization in Section 3. In Section 4,
numerical simulations are performed to verify the effectiveness of
the main theorems. Finally, conclusions are drawn in Section 5.

2. Model description and preliminaries

In this paper, we consider the following Cohen–Grossberg
neural network with time-varying delays

ẋi(t) = −di(xi(t))


ai(xi(t)) −

N
j=1

bijfj(xj(t))

−

N
j=1

cijgj(xj(t − τ(t))) − Ii


, (1)

with initial conditions

xi0(θ) = φi(θ), θ ∈ [−τ , 0],

where i = 1, 2, . . . ,N , N ≥ 2 is the number of neurons in the net-
work, xi(t) represents the state variable of the ith neuron, di(xi(t))

denotes the amplification function, ai(xi(t)) is an appropriately be-
haved function, matrices B = (bij) ∈ Rn×n and C = (cij) ∈ Rn×n

are the connection weight matrix and delayed connection weight
matrix, respectively, with elements satisfying bij ≤ bij ≤ b̄ij,
c ij ≤ cij ≤ c̄ij, fj, gj denote the activation functions. τ(t) corre-
sponds to the time varying delays result from the finite speed of
the axonal signal transmission and satisfies 0 ≤ τ(t) ≤ τ , Ii is the
external input to the ith neuron.

The master system of the considered master–slave systems is
described by (1) while the slave system is formulated as

ẏi(t) = −di(yi(t))


ai(yi(t)) −

N
j=1

b̃ijfj(yj(t))

−

N
j=1

c̃ijgj(yj(t − τ(t))) − Ii


+ ui(t), (2)

with initial conditions

yi0(θ) = ϕi(θ), θ ∈ [−τ , 0],

where bij ≤ b̃ij ≤ b̄ij, c ij ≤ c̃ij ≤ c̄ij, and ui(t) is the control input to
be designed later.

To derive the main results, the following assumptions are
introduced.
(A1) di(x) is continuous and bounded. Additionally, there exist

positive constants di and d̄i such that 0 < di ≤ di(x) ≤ d̄i
for i = 1, 2, . . . ,N , x ∈ R.

(A2) The derivative of the amplification function ai(x) has a
positive lower bound, i.e., there exists a positive constant ai
such that ȧi(x) ≥ ai > 0, x ∈ R.

(A3) The activation functions fi(x) and gi(x) are Lipschitz continu-
ous with Lipschitz constants Fi and Gi, respectively, i.e.,

|fi(x) − fi(y)| ≤ Fi|x − y|,
|gi(x) − gi(y)| ≤ Gi|x − y|,

(3)

for all x, y ∈ R.
(A4) The activation functions fi(x) and gi(x) are bounded, i.e., there

exist Mi > 0 such that |fi(x)| ≤ Mi and |gi(x)| ≤ Mi, ∀x ∈ R,
i = 1, 2, . . . , n.

Remark 1. Assumption (A4) can be satisfied by many well-
known and extensively used activation functions, such as the
sigmoid function (Cao & Liang, 2004; Chen & Rong, 2003). Due
to the boundedness of activation functions, connection weights’
mismatches between the master–slave systems can be regarded
as weak heterogeneities to some extent.

Before moving on, choose the transformation function hi(x)
such that
d
dx

(hi(x)) =
1

di(x)
, hi(0) = 0. (4)

According to (A1), 1
di(x)

exists, which is positive and continuous
for all x ∈ R, thus, hi(x) is a strictly increasing function with
respect to x. Letting zi(t) = hi(xi(t)), wi(t) = hi(yi(t)), it can be
obtained directly that żi(t) = ḣi(xi(t))ẋi(t) =

1
di(xi(t))

ẋi(t), ẇi(t) =

ḣi(yi(t))ẏi(t) =
1

di(yi(t))
ẏi(t), xi(t) = h−1

i (zi(t)), and yi(t) =

h−1
i (wi(t)). Substituting the above variable transformations into

the original master–slave systems (1) and (2), one gets

żi(t) = −ai(h−1
i (zi(t))) +

N
j=1

bijfj(h−1
j (zi(t)))

+

N
j=1

cijgj(h−1
j (zi(t − τ(t)))) + Ii, (5)
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