
Graphical norms via conceptual graphs

Madalina Croitoru a, Nir Oren b,⇑, Simon Miles c, Michael Luck c

a LIRMM, University Montpellier II, France
b Department of Computing Science, University of Aberdeen, UK
c Department of Informatics, King’s College London, UK

a r t i c l e i n f o

Article history:
Available online 14 July 2011

Keywords:
Norms
Conceptual graphs
Reasoning
Graph-based reasoning
Normative violations

a b s t r a c t

The specification of acceptable behaviour can be achieved via the use of obligations, permissions and pro-
hibitions, collectively known as norms, which identify the states of affairs that should, may, or should not
hold. Norms provide the ability to constrain behaviour while preserving individual agent autonomy.
While much work has focused on the semantics of norms, the design of normative systems, and in par-
ticular understanding the impact of norms on a system, has received little attention. Since norms often
interact with each other (for example, a permission may temporarily derogate an obligation, or a prohi-
bition and obligation may conflict), understanding the effects of norms and their interactions becomes
increasingly difficult as the number of norms increases. Yet this understanding can be critical in facilitat-
ing the design and development of effective or efficient systems. In response, this paper addresses the
problem of norm explanation for Naïve users by providing of a graphical norm representation that can
explicate why a norm is applicable, violated or complied with, and identify the interactions between per-
missions and other types of norms. We adopt a conceptual graph based semantics to provide this graphical
representation while maintaining a formal semantics.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Solutions to problems arising in the domain of multi-agent
systems have often been inspired by approaches from human soci-
eties. Nowhere is this more evident than in addressing the problem
of controlling the behaviour of agents within open systems. Here,
interactions between agents can cause unexpected system behav-
iour, and traditional procedural approaches fail due to the unpre-
dictability and complexity of these interactions, as well as the
inherent autonomy of the agents involved. In human societies,
behavioural control is achieved in a declarative manner, by speci-
fying expectations regarding the behaviour of others, such as with
laws or rules. These specifications, or norms, identify obligations,
permissions and prohibitions that individuals are expected to com-
ply with in particular situations. Drawing on this, there has been
much work concerning the application of norms to artificial sys-
tems, in which agents are able to make use of concepts such as
obligations, permissions, and prohibitions, to represent and reason
about socially imposed goals and their execution. Such norm aware
agents are able to decide whether to act in a manner consistent
with norms, or whether to ignore them. In this context, norms
are generally imposed on a set of agents in order to increase the

overall utility of a system (often at the cost of individual utility)
[18], or to reduce computational or communication overhead [4].

While the design and architecture of norm aware agents is crit-
ically important, this is not the only problem that must be ad-
dressed when utilising norms. Perhaps more interesting (and
more challenging) is the problem of design time identification of
which norms are needed in order to achieve some desired behav-
iour. Norms can interact with each other in unpredictable ways,
and determining the effects of a norm on a system can thus be dif-
ficult. To identify these problematic norm interactions requires us
to be able to explain the effects of a norm, and why, in some specific
situation, it is applicable, violated, complied with, or in some other
state, yet this has not been investigated to any real depth. More-
over, the ability to provide such explanations can enable designers
to better understand the interactions between different norms,
thereby allowing them to avoid introducing redundant norms [3],
and to specify norms more precisely. Norm explanations can thus
provide vital support for the design a normative system. In addi-
tion, from the perspective of users, norm explanation can facilitate
a more intuitive appreciation of a system by providing a stronger
understanding of the reasons why particular norms may have been
brought to certain states in response to system events. Such a facil-
ity can increase and enhance the trust of a user in relation to oper-
ation of the system, providing confidence that it is in fact operating
correctly.

Since much of the research into the formal properties of norms
has taken place within the area of philosophy and deontic logic

0950-7051/$ - see front matter � 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.knosys.2011.06.025

⇑ Corresponding author.
E-mail addresses: croitoru@lirmm.fr (M. Croitoru), n.oren@abdn.ac.uk (N. Oren),

simon.miles@kcl.ac.uk (S. Miles), michael.luck@kcl.ac.uk (M. Luck).

Knowledge-Based Systems 29 (2012) 31–43

Contents lists available at SciVerse ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier .com/ locate /knosys

http://dx.doi.org/10.1016/j.knosys.2011.06.025
mailto:croitoru@lirmm.fr
mailto:n.oren@abdn.ac.uk
mailto:simon.miles@kcl.ac.uk
mailto:michael.luck@kcl.ac.uk
http://dx.doi.org/10.1016/j.knosys.2011.06.025
http://www.sciencedirect.com/science/journal/09507051
http://www.elsevier.com/locate/knosys


[13,23], norms are typically specified within a knowledge-based
system (KBS) using a logic which, for non-technical users, is often
difficult to understand. However, in order for a KBS to be usable by
such users, it is essential that they can understand and control not
only the knowledge base construction process, but also how results
are obtained from the running system. It should be easy for users
not only to enter different pieces of knowledge and to understand
their meaning but also to understand the results of the system, and
how the system computed these results. This latter aspect, namely
the ability to understand why the system gives a certain answer, is
especially important since the expertise of different users may
vary, and explaining each step of the logical inference process
poses a difficult problem.

However, due to the core properties of norms, providing such
explanations is not trivial. First, norms can be applicable only in spe-
cific circumstances, rather than over a system’s entire lifetime. Thus,
examining norms in isolation from a running system may not
provide any useful explanation regarding an individual agent’s
behaviour. Second, multiple norms can interact with each other,
collectively placing complex expectations on the various agents in-
volved. Thus, while it may appear that an agent is violating some
obligation, it may actually be the case that the agent is either cur-
rently exempt from this obligation due to it not being applicable in
the current situation, or due to there being some permission that ap-
plies in the current circumstances, overriding the obligation. Given
this, it should be clear that it is extremely difficult for non-technical
users (indeed, also for technical experts) to interpret a large set of
textually (logically) specified norms and identify their effects, and
that an alternative solution to norm understanding is required.

In response, our aim in this paper is to provide a sound graph-
ical representation of norms, by adopting a graph-based semantics
and applying the semantics to normative systems. To do so, we
adopt the normative framework of Oren et al. [17], a generic frame-
work that enables updating and monitoring of the changing status
of norms, and supports the normative reasoning process. Now, in
order to provide such a graphical representation, we must be able
to provide a sound and complete translation between the opera-
tions of the normative framework and the operations on the
graph-based representation. Not only can this help in understand-
ing the results of an update to the status of a norm, but it also al-
lows for structural optimisations of norms that might not be
obvious from the textual (logical) representation of the norm. Each
of these is a significant challenge; in this paper, we focus on the
former aspect of the graphical representation, leaving the latter
for future work.

Oren et al.’s framework represents norms by means of sets of
first order logic tuples, which are manipulated using a set of rules
that can be reduced to first order logic subsumption on the individ-
ual tuple elements. The contribution of this paper is to map norms
onto conceptual graphs [19,20], the only graph based formalism to
have a sound and complete semantics corresponding to deduction
(via subsumption) in first order logic. This formal semantics en-
ables us to easily link Oren et al.’s norms, with their textual repre-
sentation, to the conceptual graph’s graphical representation,
thereby providing a graphical explanation regarding the system’s
normative state to non-technical users. This aspect of our work
was first discussed in [6], in which it was shown how individual
obligations can be represented graphically. Representing permis-
sions, and their interaction with obligations, introduces further
complications, but we can extend the basic model to address this,
as originally outlined in [16].

The remainder of this paper is structured as follows. In the next
section, we provide the necessary formal background to the paper
by briefly reviewing the normative framework and introducing the
conceptual graph formalism. In Section 3, we show how the status
of norms can be computed graphically. Section 4 then considers

the graphical representation of interactions between permissions
and other norm types. In Section 5, the paper provides a discussion
in two parts: first it offers an evaluation of the effectiveness of our
approach, together with an assessment of what is needed for more
substantial user studies; second, it reviews some important related
work. Finally, Section 6 concludes the paper by considering possi-
ble extensions to our work.

2. Background

In order to provide the requisite context for the contributions of
the paper, and the basis on which we are able to develop norm
explanations, we begin in this section by reviewing the formal
model of norms. The model focuses on the problem of monitoring
in that it facilitates identification of the status of norms as the envi-
ronment changes over time. We then introduce the graphical for-
malism used in the remainder of this paper, conceptual graphs
(CGs), which we map to the normative model in Section 3. This
mapping allows us to address the problem of explanation, identify-
ing why a norm has a particular status at some point in time.

2.1. The normative model

We introduce the normative model in a somewhat informal
manner, motivating it in the context of a small example and exam-
ining how the model can be applied. Consider a situation in which
an agent takes their car to a repair shop in order to be repaired. This
repair shop provides a guarantee to its customers that their cars will
be repaired within seven days, and thus has an obligation upon it,
whenever a car arrives, to repair it within seven days. Clearly, once
this obligation is fulfilled, it is lifted, and the repair shop no longer
needs to repair the car. However, the obligation remains on the re-
pair shop as long as the car is not repaired (even after seven days
have passed). Finally, circumstances beyond the repair shop’s con-
trol (for example, a power failure), will give the repair shop permis-
sion to repair the car seven days later than otherwise required.

The requirement on the repair shop to mend a car within seven
days only obliges the repair shop to take action once a car actually
arrives. Until then, the norm is an abstract norm. When a customer
brings in a car, the norm is instantiated, thereby obtaining norma-
tive force over the repair shop and obliging it to repair the car
within seven days. A single abstract norm can result in multiple
instantiated norms; if two cars arrive at the repair shop, two instan-
tiations of the abstract norm will occur.

Given this example, we observe that a norm may be defined in
terms of five components. First, a norm has a type, such as an obli-
gation, or a permission. Second, a norm has an activation condition,
identifying the situations in which the norm affects some agents.
Third, a norm imposes some normative condition on the affected
agents; if this normative condition does not hold, then the norm
is not being complied with (or made use of in the case of a permis-
sion). Fourth, norms have an expiration condition, identifying the
situations after which the norm no longer affects the agent. Finally,
the norm must identify the agents to which it is directed (i.e. those
it affects), referred to as the norm targets.

More formally, we assume that the permissions and obligations
represented by the norm refer to states and events in some envi-
ronment, represented by some logical predicate language L, such
as first order logic. A norm is then a tuple of the form:

hNormType;

NormActivation;

NormCondition;

NormExpiration;

NormTargeti;

32 M. Croitoru et al. / Knowledge-Based Systems 29 (2012) 31–43



Download	English	Version:

https://daneshyari.com/en/article/403829

Download	Persian	Version:

https://daneshyari.com/article/403829

Daneshyari.com

https://daneshyari.com/en/article/403829
https://daneshyari.com/article/403829
https://daneshyari.com/

