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Artic{e history: Regression is the process of learning relationships between inputs and continuous outputs from example
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of artificial neural networks since the seminal work of Rosenblatt (1958). The aims of this paper are to
provide an overview of many regression algorithms, and to demonstrate how the function representation
whose parameters they regress fall into two classes: a weighted sum of basis functions, or a mixture
of linear models. Furthermore, we show that the former is a special case of the latter. Our ambition is

g:;‘:g;g?;‘n thus to provide a deep understanding of the relationship between these algorithms, that, despite being
Locally weighted regression derived from very different principles, use a function representation that can be captured within one
Gaussian mixture regression unified model. Finally, step-by-step derivations of the algorithms from first principles and visualizations
Radial basis function networks of their inner workings allow this article to be used as a tutorial for those new to regression.
Gaussian process regression © 2015 Elsevier Ltd. All rights reserved.
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1. Introduction

Regression is the process of learning relationships between in-
puts and continuous outputs from example data, which enables
predictions for novel inputs. This relationship is represented as a
function f : X — Y, which predicts, for instance, a person’s height
from their age. Here, the input space X (age), is known as the de-
pendent variable, and the output space Y (height) as the inde-
pendent variable (Fisher, 1925). In the example, the training data
consists of concrete age and height measurements for a set of peo-
ple.

Regression is a form of supervised learning where the output
space is continuous, i.e. Y € RM. In parametric regression, one
assumes that the function f is well represented by a specific
parameterized model, for instance a linear model f (x) = a™x. With
a linear model, the model parameters are the slopes a. The aim of
parametric regression is to find the parameters of the model that
minimize some error on the training examples.

Another example of a parameterized model is a Radial Basis
Function Network (Park & Sandberg, 1993), where the function is
modeled as a weighted sum of basis functions f(x) = 25:1 We
¢e(X). If we assume that the basis functions ¢.—q. g have pre-
specified centers and widths, the model parameters that are to
be determined through parametric regression are the weights
We—1. g, See Fig. 1.

The generic scheme for parametric regression is depicted in
Fig. 2. The input to the regression algorithm is the training data
and a set of algorithmic meta-parameters, including for instance
learning rates. Each regression algorithm assumes a certain type
of model, e.g. linear least squares assumes a linear model. The
output of the algorithm is a vector of model parameters, which
are determined by minimizing an error measure on the training
data. Evaluating the model to make predictions for novel inputs
requires both the model (e.g. f (x) = a™x) and its model parameters
(e.g.a = [2 1]"). A detailed discussion of the differences between
model parameters and meta-parameters is given in Section 2.6.

In this article, we take a model-centric view on regression, which
means that we classify and analyze algorithms based on the model
they assume, rather than the algorithmic procedure that is used
to optimize the parameters of this model. Our first contribution
is to show that the models used in a wide variety of regression

algorithms (listed in Table 1) fall into two main classes: a mixture
of linear models or a weighted sum of basis functions.

Our second contribution is to demonstrate that the latter class
of models (weighted sum of basis functions) is a special case of
the former one (mixture of linear models). As a consequence, and
rather strikingly, all the algorithms in Table 1 - despite having
being derived from very different principles — use parameterized
functions that can be described by one unified model. This has been
visualized in Fig. 3. Thus, these regression algorithms should not
be thought of as using their own distinct model customized to the
algorithmic procedure, but rather as using models that are special
cases of the unified model. Such a perspective provides a deeper
understanding of the relationship between these algorithms, and
is a necessary step towards model-based machine learning, as
proposed by Bishop (2013), i.e. the idea of the automated selection
of the adequate machine learning algorithm given the formal
description of a specific learning problem.

Despite our model-centric view, we do describe and explain
the algorithmic procedures used in different regression algorithms,
including (regularized) least squares, expectation-maximization,
backpropagation, decision tree learning, and Gaussian process
regression. This is necessary to understand why an algorithm
assumes a certain type of model, and how that model relates to the
unified model we propose. These explanations however, should
not distract from the fact that our main interest is in the underlying
model that the algorithms assume (linear model, RBFN, model tree,
Gaussian mixture model, Gaussian process), and that all these
models are special cases of the unified model.

Explaining the algorithms also allows this article to be used as
a tutorial on regression; we provide an overview of many algo-
rithms, show their derivations from first principles, visualize their
inner workings so that novices may acquire an intuitive under-
standing, and provide network representations for readers with a
background in artificial neural networks. Using one unified, easy to
understand model highlights relationships between algorithms; a
key to acquiring more global understanding of regression meth-
ods. It is not our aim to be exhaustive, in terms of presenting all
regression algorithms and their variants. This would distract from
our actual aim, which is to highlight the similarities and differ-
ences between those algorithms whose underlying model is a spe-
cial case of the unified model. For further reading, we provide
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