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a b s t r a c t

In data science and machine learning, hierarchical parametric models, such as mixture models, are often
used. They contain two kinds of variables: observable variables, which represent the parts of the data that
can be directly measured, and latent variables, which represent the underlying processes that generate
the data. Although there has been an increase in research on the estimation accuracy for observable
variables, the theoretical analysis of estimating latent variables has not been thoroughly investigated. In
a previous study, we determined the accuracy of a Bayes estimation for the joint probability of the latent
variables in a dataset, and we proved that the Bayes method is asymptotically more accurate than the
maximum-likelihood method. However, the accuracy of the Bayes estimation for a single latent variable
remains unknown. In the present paper, we derive the asymptotic expansions of the error functions,
which are defined by the Kullback–Leibler divergence, for two types of single-variable estimations when
the statistical regularity is satisfied. Our results indicate that the accuracies of the Bayes and maximum-
likelihoodmethods are asymptotically equivalent and clarify that the Bayes method is only advantageous
for multivariable estimations.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In machine learning and data science, hierarchical parametric
models, such asmixturemodels, are often used. Thesemodels con-
tain two kinds of variables: observable and latent. The observable
variables represent the observable, measurable data, while the la-
tent variables express the underlying processes that generate the
data. For example, a common hierarchical model is a mixture of
Gaussian distributions defined by

p(x|w) =

K
k=1

akN (x|µk, Σ),

where x ∈ RM is the observable position, w is the parameter con-
taining ak and µk, ak ≥ 0 is the mixing ratio, and N (x|µ, Σ) is
a Gaussian distribution withmeanµ and variance–covariancema-
trixΣ . Let us consider cluster analysis, which is a typical task of un-
supervised learning. The observable variable is the data position x,
and the latent variable is the ungiven cluster label k ∈ {1, . . . , K},
which indicates to which component/cluster the data belong.

Since the parameter is unknown, in practice, it is often
necessary to deal with both the parameter and the observable or
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the latent variable. The parameter is usually estimated in one of
two ways: the maximum-likelihood method or the Bayes method.
The maximum-likelihood method estimates the parameter that
maximizes the likelihood function, while the Bayes method
determines the optimal (posterior) distribution for the parameter.

It has been noted that the hierarchical models include singu-
larities in the parameter space (Amari & Ozeki, 2001; Watanabe,
2001b). At a singular point, the relation between the parameter w
and the probability p(x|w) is not one to one, and the Fisher in-
formation matrix is not positive definite. Let the K ∗ component
Gaussian mixture be the data-generating distribution, and let the
K component mixture be a learning model. The case K > K ∗

corresponds to a singular case: there are redundant components
and their parameters contain singularities. On the other hand, the
well-specified case K = K ∗ does not have singularities, and in the
present paper, we call it a regular case.

The estimation of an unseen observable variable is referred to as
a prediction. Let a set of the given data be Xn

= {x1, . . . , xn}. The
task is to predict the next data position based on the given data;
this is formulated as the estimation of the probability p(xn+1|Xn).
In order to measure the accuracy of the task, we define the error
function to be the Kullback–Leibler divergence,

EXn


q(xn+1) ln

q(xn+1)

p(xn+1|Xn)
dxn+1


,
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Fig. 1. Predictions of observable variables and estimations of latent variables. The
observable data are {x1, . . . , xn}. Rectangles and circles represent the observable
and unobservable variables, respectively. Gray nodes are the estimation targets.

where q(x) is the data-generating distribution and EXn [·] is the
expectation over all of the given data. In the example of the
Gaussian mixture, the prediction task is to estimate the next
unseen data positions.

The estimation of the latent variables is not the same as the pre-
diction task. The target variable of the estimation is unobservable,
and in many practical situations, its true value is not given; this
makes it difficult to evaluate the result. In a previous study (Ya-
mazaki, 2014), we formulated the accuracy of the latent-variable
estimation in a distribution-basedmanner. The estimation of latent
variables is divided into three classes. Let a set of latent variables
be Y n

= {y1, . . . , yn}, where yi is the corresponding variable to xi.
Fig. 1 shows the prediction of observable variables and the three
types of estimations of latent variables. Rectangles and circles in-
dicate the observable and latent variables, respectively. The gray
nodes are the targets of the estimations. The top left panel shows
the prediction, which is expressed as the estimation of p(xn+1|Xn).
The top right panel shows the estimation of the joint probability
p(Y n

|Xn), in which all of the latent variables are targets; we will
refer to this as Type I. The bottom left panel shows the estimation
of the probability of a specific latent variable p(yj|Xn); wewill refer
to this as Type II. The bottom right panel shows the estimation of
the probability of a latent variable in the unseen data p(yn+1|Xn);
we will refer to this as Type III. In the example of a Gaussian mix-
ture, these three types of latent-variable estimation correspond to
the cluster analysis process of assigning labels to data.

When the number of data points n is sufficiently large, the form
of the error function is referred to as the asymptotic expansion,
and the calculation of this form has been exhaustively studied for
the prediction process. In the maximum-likelihood method, the
asymptotic error is well known, and it has been used as a crite-
rion for selecting models (Akaike, 1974; Takeuchi, 1976; White,
1982). In the Bayes method, the estimation depends on the poste-
rior distribution, and the theoretical properties of its convergence
have been studied (Ghosal, Ghosh, & Vaart, 2000; Le Cam, 1973;
Nguyen, 2013). The normalizing factor of the posterior distribution
is themarginal likelihood, and this has a direct relationwith the er-
ror function (Levin, Tishby, & Solla, 1990). Since the asymptotic ex-
pansion of themarginal likelihood has been derived for the regular
case (Clarke & Barron, 1990; Schwarz, 1978), this relation allows us
to calculate the asymptotic error. In the singular case, algebraic ge-
ometry plays an effective role; in particular, the resolution of sin-
gularities (Hironaka, 1964) can be used to clarify the asymptotic
marginal likelihood and the asymptotic error (Aoyagi &Watanabe,
2004; Naito & Yamazaki, 2014; Rusakov &Geiger, 2005;Watanabe,
2001a, 2009; Yamazaki & Watanabe, 2003; Zwiernik, 2011).

These studies on the predictive error have focused on the esti-
mation of a single observable variable. Based on their definitions,
in themaximum-likelihoodmethod, the error function for the joint

probability ofmultiple variables is equivalent to that for the proba-
bility of a single variable. The form of the error of the Bayesmethod
depends on the number of variables. For the regular case, an infor-
mation criterion that uses the asymptotic error of the joint prob-
ability was devised for use with the selection of a Bayesian model
(Ando, 2007).

Although there are a number of studies that consider the es-
timation of observable variables and the convergence of the pa-
rameters, the theory of estimating latent variables has not been
thoroughly analyzed. The error functions of Types I, II, and III
are defined as the Kullback–Leibler divergence from the data-
generating distribution to the estimated one, and its theoretical
behavior has been analyzed. The error function of Type III with
the maximum-likelihood method has been derived, and a model-
selection criterion has been proposed for the regular case (Shi-
modaira, 1993). The asymptotic expansions of Type I in the Bayes
method and of the rest of the types in the maximum-likelihood
method have been calculated for the regular case, and we found
that with the maximum-likelihood method, their asymptotic er-
rors are equivalent and that for Type I, the Bayes method is more
accurate than the maximum-likelihood method. The singular case
has been considered, and its error has been derived only for Type I
(Yamazaki, in press).

The asymptotic errors of Types II and III with the Bayes method
are as yet unknown in both the regular and singular cases. Since
the asymptotic analysis for these estimations of a single variable
requires the calculation of higher-order terms of themarginal like-
lihood, deriving the asymptotic expansions is not straightforward.
In the present paper, we reveal one of the higher-order terms and
show the asymptotic errors of Types II and III for the regular case.
Comparing the results of this to those of the maximum-likelihood
method, we determined that the Bayes method is advantageous
only for multivariable estimations, such as those for Type I.

The remainder of this paper is organized as follows: The three
types of estimations and their error functions are formally defined
in Section 2. The results from our previous study are introduced
in Section 3. Section 4 presents the main results on the accuracy
of estimations of Types II and III. The advantage of the Bayes
estimation is discussed in Section 5.

2. Three types of estimations of latent variables

In this section, we formulate the three types of estimations of
latent variables.

2.1. Formulation of a hierarchical probabilistic model

Let x ∈ RM and y ∈ {1, . . . , K} be observable and latent
variables, respectively. The model is represented by

p(x, y|w) = p(y|w)p(x|y, w),

where the parameter is expressed as w ∈ W ⊂ Rd. The probabilis-
tic density function of x is then expressed as

p(x|w) =

K
y=1

p(x, y|w) =

K
y=1

p(y|w)p(x|y, w).

In the data-generating process of the rightmost expression, we as-
sume that y is selected based on p(y|w), and then x is determined
by p(x|y, w). In machine learning, this mixture-type form is used
to express many hierarchical models, such as Bayesian networks.

Let {Xn, Y n
} = {(x1, y1), . . . , (xn, yn)} be the i.i.d. dataset

generated by the true distribution q(x, y). We assume that the true
distribution is expressed as

q(x, y) = p(x, y|w∗),

where w∗ is referred to as the true parameter.
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