
Neural Networks 69 (2015) 51–59

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Improving nonlinear modeling capabilities of functional link
adaptive filters
Danilo Comminiello ∗, Michele Scarpiniti, Simone Scardapane, Raffaele Parisi,
Aurelio Uncini
Department of Information Engineering, Electronics and Telecommunications (DIET), ‘‘Sapienza’’ University of Rome, Via Eudossiana 18, 00184 Rome, Italy

h i g h l i g h t s

• This paper proposes an improved split functional link adaptive filter (SFLAF).
• The proposed model is characterized by the adaptive combination of two APA filters.
• An advanced scheme is also proposed involving the combination of multiple filters.
• The adaptive combinations are performed for all the projections of the APA filters.
• The proposed models are assessed in three different nonlinear modeling problems.
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a b s t r a c t

The functional link adaptive filter (FLAF) represents an effective solution for online nonlinear modeling
problems. In this paper, we take into account a FLAF-based architecture, which separates the adapta-
tion of linear and nonlinear elements, and we focus on the nonlinear branch to improve the modeling
performance. In particular, we propose a new model that involves an adaptive combination of filters
downstream of the nonlinear expansion. Such combination leads to a cooperative behavior of the whole
architecture, thus yielding a performance improvement, particularly in the presence of strong nonlinear-
ities. An advanced architecture is also proposed involving the adaptive combination of multiple filters
on the nonlinear branch. The proposed models are assessed in different nonlinear modeling problems, in
which their effectiveness and capabilities are shown.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlinear modeling problems have always aroused great inter-
est in the research community. In particular, applications requir-
ing an online modeling of nonlinearities have led to the devel-
opment of many linear-in-the-parameter (LIP) nonlinear models,
which consist in a nonlinear expansion of the input followed by a
linear model. This approach derives from Cover’s Theorem on the
separability of patterns (see Haykin, 2008), which ensures univer-
sal approximation capabilities given a sufficiently large number of
nonlinear elements.

Among the family of LIP nonlinear models for online learn-
ing, representative examples include adaptive Volterra models
(Azpicueta-Ruiz, Zeller, Figueiras-Vidal, Kellermann, & Arenas-
García, 2013; Zhao & Zhang, 2009a), regularized networks
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(Poggio & Girosi, 1990; Solazzi & Uncini, 2004), spline adaptive
filters (Scarpiniti, Comminiello, Parisi, & Uncini, 2013; Vecci, Pi-
azza, & Uncini, 1998), even mirror Fourier nonlinear filters (Carini
& Sicuranza, 2014), kernel adaptive filters (Fan & Song, 2014; Zhu,
Chen, & Príncipe, 2012), online extreme learningmachines (Huang,
Huang, Song, & You, 2015; Scardapane, Comminiello, Scarpiniti, &
Uncini, in press). In this work, we focus on a class of LIP nonlinear
filters based on the functional links (Pao, 1989; Pao & Beer, 1988).
The functional link is a functional operator, which allows to repre-
sent an input pattern in a feature space where its processing turns
out to be enhanced. The functional links have been widely used
in single-layer feedforward neural networks, named functional link
artificial neural networks (FLANNs), or also functional link networks
(FLNs) (Amin, Savitha, Amin, & Murase, 2012; Patra, Pal, Chatterji,
& Panda, 1999; Scardapane, Wang, Panella, & Uncini, 2015; Zhao
& Zhang, 2009b). They have also been used in conjunction with
adaptive filters for online learning applications, with the name
of FLANN filters (Sicuranza & Carini, 2011) or also functional link
adaptive filters (FLAFs) (Comminiello, Azpicueta-Ruiz, Scarpiniti,
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Uncini, & Arenas-Garcia, 2011; Comminiello, Scarpiniti, Azpicueta-
Ruiz, Arenas-García, & Uncini, 2013).

In this paper, we take into account a functional link-based fil-
ter, the split FLAF (SFLAF) (Comminiello, Scarpiniti, Azpicueta-Ruiz
et al., 2013), which separates the adaptation of linear and non-
linear elements, thus performing two distinct tasks in parallel:
the estimation of the linear impulse response and the modeling
of nonlinearities. With respect to prior works on FLAFs (Com-
miniello et al., 2011; Comminiello, Scarpiniti, Azpicueta-Ruiz et al.,
2013), we propose a new architecture, called combined SFLAF (cS-
FLAF), in which the nonlinear path is characterized by an adaptive
combination of two filters downstream of the nonlinear expan-
sion. Adaptive combination of filters exploits the diversity of
parallel branches to improve the filtering performance when no
much information is a priori provided on the model of signal
to be processed (Arenas-García, Martínez-Ramón, Navia-Vázquez,
& Figueiras-Vidal, 2006). In this regard, many efforts have been
made in the linear case (Arenas-García et al., 2006; Comminiello,
Scarpiniti, Parisi, & Uncini, 2013; Silva & Nascimento, 2008), but in
the nonlinear case the combined output takes into account directly
the joint effect of linear and nonlinear filtering (Azpicueta-Ruiz,
Zeller, Figueiras-Vidal, Arenas-García, & Kellermann, 2011; Com-
miniello, Scarpiniti, Azpicueta-Ruiz et al., 2013).

Here, we investigate the effects of the combination of two
purely nonlinear outputs that leads to an improvement of the task
of nonlinear modeling. The two adaptive filters on the nonlinear
branch are updated by using the same affine projection algorithm
(APA) (Ozeki & Umeda, 1984) but with different projection orders.
In particular, choosing a unitary projection order for one filter
and a higher order for the other one, we provide the two filters
with different adaptation rules, respectively a gradient-based one
and a Hessian-based one. This gives robustness to the model,
which is able to provide improved performance, especially when
an unknown system introduces very strong nonlinearities. Another
novel insight in this architecture is represented by the fact that the
adaptive combination is performed involving not only the current
projection, as in Arévalo, Apolinário, de Campos, and Sampaio-
Neto (2013), Comminiello, Scarpiniti, Parisi et al. (2013) and Ferrer,
de Diego, Gonzalez, and Piñero (2009), but all the available ones.

We also propose an advanced combined architecture involving
the adaptive combination of three APAs downstream of the func-
tional link expansion. This model further improves the nonlinear
modeling performance by taking advantage of the capabilities of
the individual filters. The proposed models are assessed in sev-
eral nonlinear system identification problems showing the perfor-
mance capabilities of the combined architectures that, according
to the system to be identified, can just select the best performing
filter or take advantage of all the filters, giving rise to an emerging
learning behavior.

The rest of the paper is organized as follows: the nonlinear
FLAF model is described in Section 2 and then, the proposed
combined FLAF-based architecture is presented in Section 3. The
advanced combined architecture is described in Section 4, while
experimental results in Section 5 prove the effectiveness of the
proposed architectures in different nonlinear modeling scenarios.
Finally, in Section 6 our conclusions are drawn.

1.1. Notation

In this paper, matrices are represented by boldface capital
letters and vectors are denoted by boldface lowercase letters.
Time-varying vectors and matrices show discrete-time index as a
subscript index, while in time-varying scalar elements the time
index is denoted in square brackets. A regression vector is repre-
sented as xn ∈ RM

=

x [n] x [n − 1] · · · x [n − M + 1]

T ,
where M is the overall vector length and x [n − i] is individual

Fig. 1. The nonlinear functional link adaptive filter.

Fig. 2. Memoryless functional link expansion.

entry at the generic time instant n− i. A generic coefficient vector,
in which all the elements depend on the same time instant, is de-
noted as wn ∈ RM

=

w0 [n] w1 [n] · · · wM−1 [n]

T , where
wi [n] is the generic ith individual entry at the n-th time instant.
The index related to a generic jth filter is denoted as subscript, be-
fore the time index for vectors and matrices, e.g. wj,n. All vectors
are represented as column vectors.

2. Nonlinear functional link adaptive filter

The FLAF model is based on the representation of the input
signal in a higher-dimensional space (Pao, 1989), where an
enhanced nonlinear modeling is allowed. Such approach derives
from machine learning theory, more precisely from Cover’s
Theorem on the separability of patterns (see for example Haykin,
2008).

The purely nonlinear FLAF is composed of two main parts: a
nonlinear functional expansion block (FEB) and a subsequent lin-
ear adaptive filter, as depicted in Fig. 1. The FEB consists of a
series of functions, whichmight be a subset of a complete set of or-
thonormal basis functions satisfying universal approximation con-
straints. The term ‘‘functional links’’ actually refers to the functions
contained in the chosen set Φ =


ϕ0 (·) , ϕ1 (·) , . . . , ϕQ−1 (·)


,

where Q is the number of functional links. As depicted in
Fig. 2, at the n-th time instant, the FEB receives the input sam-
ple x [n], which is stored in an input buffer xn ∈ RMin =
x [n] x [n − 1] · · · x [n − Min + 1]

T , whereMin is defined as
the input buffer length. Each element of xn is passed as argument to
the chosen set of functions Φ , thus yielding a subvector gi,n ∈ RQ :

gi,n =


ϕ0 (x [n − i])
ϕ1 (x [n − i])

...
ϕQ−1 (x [n − i])

 . (1)
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