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Memristive network exhibits state-dependent switching behaviors due to the physical properties of
memristor, which is an ideal tool to mimic the functionalities of the human brain. In this paper, finite-time
synchronization is considered for a class of memristor-based neural networks with time-varying delays.
Based on the theory of differential equations with discontinuous right-hand side, several new sufficient
conditions ensuring the finite-time synchronization of memristor-based chaotic neural networks are
obtained by using analysis technique, finite time stability theorem and adding a suitable feedback
controller. Besides, the upper bounds of the settling time of synchronization are estimated. Finally, a
numerical example is given to show the effectiveness and feasibility of the obtained results.
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1. Introduction

In 1971, Professor Leon O. Chua first proposed the existence
of the fourth ideal electrical circuit element to describe the
relationship between electric charge and magnetic flux and named
it as a memristor, which is a contraction of memory and resistor
(Chua, 1971). Almost 40 years later, the Hewlett-Packard research
team successfully fabricated the prototype of memristor and
showed that a memristor is a nonlinear circuit element and its
value, called memristance or memductance, is not unique (Strukov,
Snider, Stewart, & Williams, 2008). This is because memristance
depends on the magnitude and polarity of the voltage applied to
it and the length of the time that the voltage has been applied.
When the voltage is turned off, the memristor remembers its
most recent value until next time it is turned on Guo, Wang, and
Yan (2013). Because of this feature, broad potential applications
of the memristor have been identified (Corinto, Ascoli, & Gilli,
2011; Ebong & Mazumder, 2011; Itoh & Chua, 2009; Pershin &
Ventra, 2010). For example, memristor can be useful for low-power
computation and storage to store information without the need
of using power. In addition, memristor can be used to implement
programmable analog circuits (Wen, Zeng, Huang, & Chen, 2013).
Another important application of memristor is to construct a
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new model of neural networks, memristor-based neural networks
(MNNSs), to emulate the human brain (Jin & Wang, 2010).

It is well known that a neural network can be implemented
by circuits such as that the Hopfield neural network model can
be implemented in a circuit where the self feedback connection
weights are implemented by resistors (Chen, Zeng, & Jiang, 2014b).
Therefore, by the same logic, we can build MNNs to emulate the
human brain by replacing resistors with memristors in the circuits.
Such a model is typically a state-dependent nonlinear switching
dynamical system (Wu & Zeng, 2013). It can remember its past
dynamical history, store a continuous set of states, and be “plastic”
according to the pre-synaptic and post-synaptic neuronal activity
(Wu, Wen, & Zeng, 2012). It will open up new possibilities in
the understanding of neural processes using memory devices, an
important step forward to reproduce complex learning, adaptive
and spontaneous behavior with electronic neural networks (Wu
etal, 2012).

One of the hot topics in the investigation of neural networks is
chaos synchronization due to its successful applications in a variety
of fields including secure communication, chemical and biological
systems, human heartbeat regulation, information science, image
processing, and harmonic oscillation generation (Wen, Bao, Zeng,
Chen, & Huang, 2013; Wu & Zeng, 2013). Currently, some
chaos control and synchronization for memristor-based chaotic
systems have been proposed (Chandrasekar, Rakkiyappan, Cao,
& Lakshmanan, 2014; Wang, Li, Peng, Xiao, & Yang, 2014; Wen,
Bao et al., 2013; Wu et al,, 2012; Wu & Zeng, 2013; Wu, Zeng,
Zhu, & Zhang, 2011; Zhang & Shen, 2013, 2014). In Wu and Zeng
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(2013), the anti-synchronization control of a class of memristive
recurrent neural networks was studied by using differential
inclusions theory and Lyapunov functional method. In Wu et al.
(2012, 2011), by using differential inclusions theory and Lyapunov
functional method, the authors were concerned on the exponential
synchronization of a class of memristor-based recurrent neural
networks. In Wen, Bao et al. (2013), based on the fuzzy theory
and Lyapunov method, the global exponential synchronization of
a class of memristor-based recurrent neural networks with time-
varying delays was considered. In Zhang and Shen (2013, 2014),
by employing the non-smooth analysis approach, the authors
investigated the exponential synchronization of memristor-based
chaotic neural networks with time-varying delays and general
activation functions. In Wang et al. (2014), the synchronization
control of memristor-based recurrent neural networks with
impulsive perturbations was studied. In Chandrasekar et al.
(2014), the synchronization of memristor-based recurrent neural
networks with two delay components was investigated by second-
order reciprocally convex approach.

However, it is worthy of noting that the most of the exist-
ing results mentioned above, have been used to guarantee the
asymptotic stability or exponential stability of the synchronization
error dynamics. This means that the trajectories of the response
system can reach to the trajectories of the drive system over the
infinite horizon. In the practical engineering process, however, it
is more desirable that the synchronization objective is realized in
a finite time rather than merely asymptotically. To achieve faster
synchronization in control systems, an effective method is using
finite-time control techniques. Finite-time synchronization means
the optimality in convergence time (Liu, Ho, Yu, & Cao, 2014; Liu,
Park, Jiang, & Cao, 2014). Moreover, the finite-time control tech-
niques have demonstrated better robustness and disturbance re-
jection properties (Nersesov & Haddad, 2008; Yang & Cao, 2010;
Zhang, Feng, & Sun, 2012). More recently, the finite-time stabiliza-
tion and synchronization problem of complex networks, discon-
tinuous neural networks and some other nonlinear systems were
studied and many good results were formulated (Liu, Ho et al,,
2014; Liu, Park et al., 2014; Nersesov & Haddad, 2008; Yang & Cao,
2010; Zhang et al., 2012). Nevertheless, till now, there are very few
or even no published works on the problem of finite-time synchro-
nization for the chaotic MNNs. Therefore, it is interesting to fill the
gap.

Motivated by the above discussions, in this paper, we study
the finite-time synchronization for a class of MNNs with time-
varying delays. First, based on the finite-time stability theory, two
different types of controller are introduced. Then, by applying the
analysis technique, differential inclusions theory and Lyapunov
functional method, some novel sufficient conditions are proposed
to ensure the finite-time synchronization for considered MNNs.
Finally, some numerical examples are provided to verify the
theoretical results established in this paper. Our main results are
obtained based on p-norm. It is believed that our results provide
some new guidance for the qualitative analysis of memristive
recurrent neural networks. These methods may be applied for
analyzing other classes of memristive neural networks or some
other complex nonlinear memristive systems.

The rest of the paper is organized as follows. In Section 2,
the drive-response systems are introduced. In addition, some
assumptions and definitions together with some useful lemmas
needed in this paper are presented. Next section is devoted to
investigating the finite-time synchronization between two chaotic
MNNs with time-varying delays. In Section 4, an example with
numerical simulations is given to illustrate the effectiveness of the
obtained results. Finally, some general conclusions are drawn in
Section 5.

2. Preliminaries

In this paper, we consider a class of MNNs with time-varying
delays described by the following equation:
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wherei € £ 2 {1,2,...,n},n > 2 denotes the number of
neurons in the neural network; x;(t) corresponds to the voltage
of the capacitor G; fi(x;(t)) and g (x;(t — 7(t))) are the feedback
functions; 7;(t) is the time-varying delay along the axon of the jth
unit from the ith unit and satisfy 0 < 7j(t) < 7j; I; denotes the
external bias on the ith unit; d; > 0 represents the rate with which
the ith neuron will reset its potential to the resting state when
disconnected from the network; a;(x(t)) and b;;(x(t)) represent
memristor-based weights, and
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where x(t) = x1(b), x2(t), ..., x,()T; M; and Wj denote

the memductances of memristors P; and Qj, respectively. P;
represents the memristor between the feedback function fj(x;(t))
and x;(t), and Q; represents the memristor between the feedback
function f;(x;(t — 7;(t))) and x;(t). The interested readers can
consult the works (Jin & Wang, 2010; Pershin & Ventra, 2010; Wu
et al, 2012) to get more explanation about the construction of
MNNSs.

As is well known, capacitor G is invariant while memductances
of memristors M and Wj, respond to change in pinched
hysteresis loops (Chandrasekar et al., 2014; Wang et al., 2014;
Wau et al,, 2011). Consequently, a;;(x(t)) and b;;(x(t)) will change.
According to the feature of memristor and the current-voltage
characteristics, we apply a general mathematical model of the
memristance as follows
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where h; : R" — R are threshold level functions, r; € R are
threshold level, and dj, dj, by, bjj are constant numbers.
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Remark 1. In Wen, Bao et al. (2013), the special case of the
threshold level function h;(xX) = x; fori € J{ is considered. In
Chenetal.(2014b), Wu et al. (2012), Wu and Zeng (2013), Wu et al.
(2011) and Zhang and Shen (2013, 2014), the authors concerned
the case h;(x) = |x;| for i € {. From this point, we can see that the
threshold level function considered in this paper is more general.

The initial conditions associated with system (1) are given by
xi(s) = ¢i(s), se€[-r,0], (2)

where 7 = maxjc; {5}, ¢(5) = (91(5), 9205, ..., @a(s)" €
C([—t, 0], R™), which denotes the Banach space of all continuous
functions mapping [—, 0] into R" with p-norm (p > 1is a positive
integer) defined by
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