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a b s t r a c t

This paper presents an augmented algorithm for fully complex-valued neural network based onWirtinger
calculus, which simplifies the derivation of the algorithm and eliminates the Schwarz symmetry restric-
tion on the activation functions. A unified mean value theorem is first established for general functions
of complex variables, covering the analytic functions, non-analytic functions and real-valued functions.
Based on so introduced theorem, convergence results of the augmented algorithm are obtained under
mild conditions. Simulations are provided to support the analysis.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Complex-valued neural networks (CVNNs) have recently at-
tracted broad research interests, for example, in seismics, sonar,
and radar (Hirose, 2012). CVNNs have been shown to inherent ad-
vantages in reducing the number of parameters and operations
involved (Mandic & Goh, 2009). In addition, CVNNs have compu-
tational advantages over real-valued neural networks in solving
classification problems (Aizenberg, 2011), and can even solve the
XOR problem with only one complex-valued neuron (Nitta, 2003).
However, the choice of activation function remains being a chal-
lenging task due to the conflict requirements of boundedness and
analyticity—Liouville’s theorem states that if a function is analytic
and bounded in the complex plane, then it must be a constant.
A traditional split-complex approach (Nitta, 1997) uses a pair of
real-valued activation functions to process the real and imaginary
parts of a complex signal separately. While this approach helps
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avoiding the problem of unboundedness, split complex activation
functions are never analytic. In contrast, ‘fully’ complex activation
functions (Kim & Adali, 2003), such as elementary transcenden-
tal functions, are analytic and bounded almost everywhere in C,
and have been used inmulti-layer perceptions (Kim&Adali, 2003),
radial basis function networks (Savitha, Suresh, & Sundararajan,
2012) and extreme learning machines (Li, Huang, Saratchandran,
& Sundararajan, 2005). Classical real-valued learning algorithms
that have been extended to complex case, contains the com-
plex least mean square (Widrow, McCool, & Ball, 1975), complex
backpropagation (Georgiou & Koutsougeras, 1992; Hirose, 1992;
Leung & Haykin, 1991; Nitta, 1997) and complex real-time recur-
rent learning (Goh &Mandic, 2004, 2007a). Signal processing tech-
niques (Adali, Li, Novey, & Cardoso, 2008; Dini & Mandic, 2012)
have also been proposed based on such activation functions, how-
ever, the basic research issue: whether these complex algorithms
share convergence properties with their real counterparts remains
largely unanswered. The complex universal approximation theo-
remof the CVNNswith fully complex activation functions (denoted
as FCVNNs for simplicity) has been given by Kim and Adali in Kim
andAdali (2003),which ensures that the FCVNNs canbe considered
as a universal approximator of any continuous complex mappings.

Convergence of the real-valued learning algorithm has been
widely studied (Shao & Zheng, 2011; Wang, Yang, & Wu, 2011;
Wu, Fan, & Zurada, 2014; Wu, Feng, Li, & Xu, 2005; Wu, Wang,
Cheng, & Li, 2011). However, in the complex domain, in addition to
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the conflict between boundedness and analyticity of the activation
function, another challenge is that the traditional mean value
theorem does not hold in the complex domain (e.g., f (z) = ez with
z2 = z1+2π i, then f (z1) = f (z2) but f (z2)− f (z1) ≠ f ′(ξ)(z2−z1)
for all ξ ∈ C). In addition, cost functions are real-valued and
therefore the complex derivative cannot be used. Some results
for split-complex nonlinear gradient descent (SCNGD) algorithms
exist (Xu, Zhang, & Liu, 2010; Zhang, Zhang, &Wu, 2009), whereby
the analysis is based on reformulating complex algorithm in
the real domain by separating it into real and imaginary parts.
Furthermore, the convergence of the SCNGD algorithms with
momentum or penalty has been established in Xu, Shao, and
Zhang (2012) and Zhang, Xu, and Zhang (2014). In addition, the
convergence of some complex adaptive filters algorithms has been
obtained under the assumption that the activation function is
a contraction (Mandic & Goh, 2009). The convergence of fully-
complex nonlinear gradient descent (FCNGD) algorithms has been
proved under Schwarz symmetry condition f ∗(z) = f (z∗) (Zhang,
Liu, Xu, & Zhang, 2014). However, this condition is usually not valid
for a polynomial function with complex coefficients, and the mean
value theorem used in Zhang, Liu et al. (2014) is not applicable
to the non-analytic functions, such as real-valued cost functions.
Recently, augmented complex statistics have been introduced into
some learning algorithms, such as the augmented complex least
mean square (Mandic & Goh, 2009; Mandic, Javidi, Goh, Kuh, &
Aihara, 2009), augmented complex extended Kalman filter (Dini &
Mandic, 2012; Goh & Mandic, 2007b), and augmented echo state
network (Xia, Jelfs, Van Hulle, Príncipe, &Mandic, 2011). These can
capture the second-order statistical information and thus produce
optimal estimates for second-order noncircular (improper) signals.
However, the convergence of the augmented FCNGD (AFCNGD)
algorithms for the FCVNNs has not yet been fully established in the
literature, which motivates this work.

The aim of this paper is to present a comprehensive study on
the weak and strong convergence for the AFCNGD algorithm, indi-
cating that the gradient of the error function goes to zero and the
weight sequence goes to a fixed point, respectively. In comparison
to the existing complex backpropagation (CBP) algorithms (Geor-
giou & Koutsougeras, 1992; Hirose, 1992; Leung & Haykin, 1991;
Nitta, 1997), the proposed AFCNGD algorithm shows faster conver-
gence and better steady-state performance. The main points and
novel contributions of this paper are as follows:
• Based onWirtinger calculus, we develop an augmented FCNGD

algorithm for CVNNs with fully complex activation functions.
This approach can simplify the derivation of the proposed
algorithm and eliminate Schwarz symmetry restriction on the
complex activation functions.

• We establish a unified mean value theorem for the com-
plex nonlinear functions, covering the analytic functions, non-
analytic functions and real-valued functions. This theorem
plays an important role in the convergence proof of the pro-
posed AFCNGD algorithm.

• The deterministic convergence including weak convergence
and strong convergence of the AFCNGD algorithm is obtained.
Our results are of considerable generality, including as particu-
lar cases almost all CVNNs with complex elementary transcen-
dental functions given in Kim and Adali (2003).

• Illustrated experiments have been performed to verify the the-
oretical results of this paper and the advantages of the proposed
AFCNGD algorithm.

The rest of this paper is organized as follows. In Section 2, we
provide an overview of second-order augmented complex statis-
tics and Wirtinger calculus. Section 3 derives the proposed aug-
mented learning algorithm for the FCVNNs. The main convergence
results and their proofs are presented in Section 4. Supporting nu-
merical experiments are presented in Section 5. Some conclusions
are drawn in Section 6.

2. Preliminaries

2.1. Notations

We use bold-face upper case letter to denote matrices, bold-
faced lower case letters for column vectors, and light-faced lower
case letters for scalars. The superscripts (·)∗, (·)T and (·)H denote
the complex conjugate, transpose and Hermitian (conjugate
transpose), respectively. Re(z) and |z| denote the real part and
module of a complex number z. ∥z∥ and ∥Z∥ denote the Frobenius
norm of a vector z and amatrix Z. Finally, we refer to f (z∗) = f ∗(z)
as the Schwarz symmetry principle (Needham, 1998, p. 257).

2.2. Second-order augmented complex statistics

The recent introduction of so-called augmented complex statis-
tics (Mandic & Goh, 2009) showed that for a general (improper)
complex vector z, second order statistics based on the covariance
matrix Czz = E[zzH ] is inadequate and that the pseudo-covariance
matrix Pzz = E[zzT ] is also required to fully capture the second or-
der information. Processes with the vanishing pseudo-covariance,
Pzz = 0 is termed second order circular (or proper). In real-world
applications, most complex signals are second order noncircular
or improper, and their probability density functions are not rota-
tion invariant. In practice, the widely linear modeling (Picinbono
& Chevalier, 1995) is based on a regressor vector produced by con-
catenating the input vector zwith its complex conjugate z∗, to give
an augmented 2M × 1 input vector za = [zT , zH ]

T , together with
the corresponding augmented coefficient vector wa

= [uT , vH ]
T .

The 2M × 2M augmented covariance matrix (Schreier & Scharf,
2003) then becomes

Czaza = E

z
z∗

 
zH zT


=


Czz Pzz
P∗

zz C∗

zz


. (1)

This matrix now contains the complete complex second order sta-
tistical information available in the complex domain, see Mandic
and Goh (2009) and Schreier and Scharf (2010) for more details.

2.3. Wirtinger calculus

Any function of a complex variable z can be defined as f (z) =

u(x, y) + iv(x, y), where z = x + iy and i denotes an imaginary
unit. If the partial derivatives ∂u

∂y ,
∂v
∂x ,

∂u
∂x ,

∂v
∂y exist and satisfy

the Cauchy–Riemann conditions ∂u
∂x =

∂v
∂y and ∂v

∂x = −
∂u
∂y , then

f (z) is said to be analytic (complex derivative exists), otherwise,
it is non-analytic (complex derivative does not exist). For general
functions of complex variables (both analytic and non-analytic),
the following pair of derivatives can be defined (Brandwood, 1983;
Kreutz-Delgado, 2009; Wirtinger, 1927)

R-derivative:
∂ f
∂z

=
1
2


∂ f
∂x

− i
∂ f
∂y


(2)

R∗-derivative:
∂ f
∂z∗

=
1
2


∂ f
∂x

+ i
∂ f
∂y


(3)

which are calledWirtinger or CR derivatives. In particular, if f (z) is
analytic, then the R-derivative ∂ f

∂z becomes the complex derivative
f ′(z) and the R∗-derivative vanishes, that is the Cauchy–Riemann
equations are equivalent to ∂ f

∂z∗ = 0. Some basic rules of the CR
derivatives are summarized as (Kreutz-Delgado, 2009; Mandic &
Goh, 2009; Wirtinger, 1927)

Differential rule: df =
∂ f
∂z

dz +
∂ f
∂z∗

dz∗ (4)
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